Characterization of Codon Usage Bias in the UL55 Gene of Duck Enteritis Virus

Article Preview

Abstract:

The analysis of codon usage may improve our understanding of the evolution and pathogenesis of DEV(Duck enteritis virus) and allow reengineering of target gene to improve their expression for gene therapy.In this study,we calculated the codon usage bias in DEV UL55 gene and performed a comparative analysis of synonymous codon usage patterns in other 26 related viruses by EMBOSS CUSP program and Codon W on line.Moreover,statistical methods were used to investigate the correlations of these related parameters. By comparing synonymous codon usage patterns in different viruses,we observed that synonymous codon usage pattern in these virus is virus specific and phylogenetically conserved, with a strong bias towards the codons with A and T at the third codon position. Phylogenetic analysis based on codon usage pattern suggested that DEV UL55 gene was clustered with the avian Alphaherpesvirus but diverged to form a single branch. The Neutrality-plot suggested GC12 and GC3s adopt the same mutation pattern,meanwhile,the ENC-plot revealed that the genetic heterogeneity in UL55 genes is constrained by the G+C content, while translational selection and gene length have no or micro effect on the variations of synonymous codon usage in these virus genes.Furthermore, we compared the codon preferences of DEV with those of E. coli, yeast and Homo sapiens.Data suggested the eukaryotes system such as human system may be more suitable for the expression of DEV UL55 gene in vitro. If the yeast and E. coli expression system are wanted for the expression of DEV UL55 gene ,codon optimization of the DEV UL55 gene may be required.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

649-662

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ellis, D. Morrison, and B. Kalinna: Parasitology Research vol. 81(1995), pp.388-393.

Google Scholar

[2] J. Novembre: Molecular Biology and Evolution vol. 19(2002), p.1390.

Google Scholar

[3] A. Lloyd, and P. Sharp: Nucleic acids research vol. 20(1992), p.5289.

Google Scholar

[4] M. Kimura, The neutral theory of molecular evolution: Cambridge Univ Pr, (1985).

Google Scholar

[5] M. Bulmer: Genetics vol. 129(1991), p.897.

Google Scholar

[6] T. Ikemura: Molecular Biology and Evolution vol. 2(1985), p.13.

Google Scholar

[7] R. Grantham, C. Gautier, M. Gouy, M. Jacobzone, and R. Mercier: Nucleic acids research vol. 9(1981), p.213.

DOI: 10.1093/nar/9.1.213-b

Google Scholar

[8] P. Sharp, and E. Cowe: Yeast (Chichester, England) vol. 7(1991), p.657.

Google Scholar

[9] T. Ghosh, S. Gupta, and S. Majumdar: International journal for parasitology vol. 30(2000), pp.715-722.

Google Scholar

[10] M. Ermolaeva: Current issues in molecular biology vol. 3(2001), pp.91-97.

Google Scholar

[11] D. Lynn, G. Singer, and D. Hickey: Nucleic acids research vol. 30(2002), p.4272.

Google Scholar

[12] S. Paul, S. Bag, S. Das, E. Harvill, and C. Dutta: Genome Biology vol. 9(2008), pp. R70.

Google Scholar

[13] H. Chiapello, E. Ollivier, C. Landes-Devauchelle, P. Nitschke, and J. Risler: Nucleic acids research vol. 27(1999), p.2848.

Google Scholar

[14] Yali Zhang, and Guoqing Yang: High Technology Letters vol. 12(2002), pp.42-46.

Google Scholar

[15] X. Ma, S. Xiao, L. Fang, and H. Chen: Yi Chuan Xue Bao , Elsevier , Amsterdam vol. 32(2005), p.616.

Google Scholar

[16] J. HALL, J. GIBBS, D. COEN, and D. MOUNT: DNA vol. 5(1986), pp.281-288.

Google Scholar

[17] S. Karlin, B. Blaisdell, and G. Schachtel: Journal of virology vol. 64(1990), p.4264.

Google Scholar

[18] M. Cai, A. Cheng, M. Wang, L. Zhao, D. Zhu, Q. Luo, F. Liu, and X. Chen: Intervirology vol. 52(2009), pp.266-278.

Google Scholar

[19] L. Zhao, A. Cheng, M. Wang, G. Yuan, and M. Cai: Progress in Natural Science vol. 18(2008), pp.1069-1076.

Google Scholar

[20] R. Jia, A. Cheng, M. Wang, H. Xin, Y. Guo, D. Zhu, X. Qi, L. Zhao, H. Ge, and X. Chen: Virus Genes vol. 38(2009), pp.96-103.

Google Scholar

[21] Y. Zhang, A. Cheng, M. Wang, D. Zhu, R. Jia, F. Liu, Q. Luo, and X. Chen, Analysis of Synonymous Codon Usage in the UL26. 5 Gene of Duck Enteritis Virus , in IEEE, the 2nd International Conference on BioMedical Engineering and Informatics, Tianjing, China, 2009, pp.1829-1835.

DOI: 10.1109/bmei.2009.5305044

Google Scholar

[22] HuaChang, A. -c. Cheng, M. -s. Wang, K. -p. L. XieWei, M. -s. Cai, and SunLei, Characterization of codon usage bias in the newly identified DPV gE gene, in IEEE, the 2nd International Conference on BioMedical Engineering and Informatics, Tianjing, China, 2009, pp.1836-1841.

DOI: 10.1109/bmei.2009.5305045

Google Scholar

[23] S. Zhang, A. Cheng, and M. Wang, Characterization of Codon Usage Bias in the Newly Identified DEV UL53 Gene, in The 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010), Chengdu, China, 2010, pp. inpress.

DOI: 10.1109/icbbe.2010.5516770

Google Scholar

[24] T. Sandhu, and L. Leibovitz: Diseases of Poultry vol. 11(2003), pp.354-63.

Google Scholar

[25] A. Cheng, M. Wang, M. Wen, W. Zhou, Y. Guo, R. Jia, C. Xu, G. Yuan, and Y. Liu: High Technol Lett vol. 16(2006), pp.948-953.

Google Scholar

[26] Y. Wu, A. Cheng, and M. Wang, Molecular Characterization Analysis of Newly identified Duck Enteritis Virus UL55 Gene, in The 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010) Chengdu, China, 2010, pp. inpress.

DOI: 10.1109/icbbe.2010.5515663

Google Scholar

[27] T. Burland: Methods Mol Biol vol. 132(2000), pp.71-91.

Google Scholar

[28] F. Jeanmougin, J. Thompson, M. Gouy, D. Higgins, and T. Gibson: Trends in Biochemical Sciences vol. 23(1998), pp.403-405.

DOI: 10.1016/s0968-0004(98)01285-7

Google Scholar

[29] P. Sharp, T. Tuohy, and K. Mosurski: Nucleic acids research vol. 14(1986), p.5125.

Google Scholar

[30] F. Wright: Gene vol. 87(1990), pp.23-29.

Google Scholar

[31] P. Sharp, and W. Li: Nucleic acids research vol. 15(1987), p.1281.

Google Scholar

[32] E. Moriyama, and J. Powell: Nucleic acids research vol. 26(1998), p.3188.

Google Scholar

[33] Z. Hou, and N. Yang: Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica vol. 35(2003), p.580.

Google Scholar

[34] S. Gupta, and T. Ghosh: Gene vol. 273(2001), pp.63-70.

Google Scholar

[35] Z. Hou, and N. Yang: Yi chuan xue bao= Acta genetica Sinica vol. 29(2002), p.747.

Google Scholar

[36] W. Gu, T. Zhou, J. Ma, X. Sun, and Z. Lu: Virus Research vol. 101(2004), pp.155-161.

Google Scholar

[37] N. Sueoka: Proceedings of the National Academy of Sciences vol. 85(1988), p.2653.

Google Scholar

[38] N. Sueoka: Journal of molecular evolution vol. 49(1999), pp.49-62.

Google Scholar

[39] D. Shields, and P. Sharp: Nucleic acids research vol. 15(1987), p.8023.

Google Scholar

[40] X. Wan, D. Xu, A. Kleinhofs, and J. Zhou: BMC Evolutionary Biology vol. 4(2004), p.19.

Google Scholar

[41] N. Sueoka, and Y. Kawanishi: Gene vol. 261(2000), pp.53-62.

Google Scholar

[42] N. Sueoka: Journal of molecular evolution vol. 34(1992), pp.95-114.

Google Scholar

[43] W. Blake, M. K rn, C. Cantor, and J. Collins: Nature vol. 422(2003), pp.633-637.

Google Scholar

[44] T. Lesnik, J. Solomovici, A. Deana, R. Ehrlich, and C. Reiss: Journal of Theoretical Biology vol. 202(2000), pp.175-185.

DOI: 10.1006/jtbi.1999.1047

Google Scholar

[45] S. Karlin, and J. Mr¨¢zek: Journal of molecular biology vol. 262(1996), pp.459-472.

Google Scholar

[46] H. Romero, A. Zavala, H. Musto, and G. Bernardi: Gene vol. 317(2003), pp.141-147.

Google Scholar

[47] A. Kawabe, and N. Miyashita: Genes & Genetic Systems vol. 78(2003), pp.343-352.

Google Scholar