A Systematic Study of Solution Aging Time Impact on Surface Morphology of Sol-Gel Derived ZnO Thin Films

Article Preview

Abstract:

Pure ZnO thin films were spin coated on glass substrates using 0.5M Zinc acetate dihydrate precursor solution and then annealed at 500°C for 2h in air to get good quality thin films. The effect of sol-aging time, from as-synthesized to 4week aged, on microstructure and morphology of ZnO thin films was investigated. X-ray diffraction spectra revealed the polycrystalline wurtzite structure preferentially oriented along the (002) polar plane with variable peak intensity. AFM analysis exposed an asymmetrical cyclic morphology transition with sol-aging time from comparatively smooth surfaces with small spherical particles to a rigid wrinkle network of a high rms surface roughness value of at~42.4nm which finally untied and evolved as homogeneous surface of uniform grain distribution after 4 weeks of aging time. The minimum surface roughness of 1.6nm was obtained for the film prepared from 24h aged solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-277

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98 (2005), p.041301.

Google Scholar

[2] D. G. Thomas, J. Phys. Chem. Solids 15 (1960), pp.86-96.

Google Scholar

[3] Uwe. Rau, M. Schmidt, Thin Solid Films 387 (2001), pp.141-146.

Google Scholar

[4] J. -B. Lee, H. -J. Lee, S. -H. Seo and J. -S. Park, Thin Solid Films 387-399 (2001), p.641–646.

Google Scholar

[5] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Cryst. Growth 225 (2001), pp.110-113.

Google Scholar

[6] A. Dinia, G. Schmerber, C. Meny, V. Pierron-Bohnes, E. Beaurepaire, J. Appl. Phys. 97 (2005), p.123908.

DOI: 10.1063/1.1937478

Google Scholar

[7] A. Trinchi, Y.X. Lia,W. Wlodarski, S. Kaciulis, L. Pandolfi, S.P. Russo, J. Duplessis, S. Viticoli, Sens. Actuators A 108 (2003), p.263–270.

DOI: 10.1016/s0924-4247(03)00359-5

Google Scholar

[8] V. Srikant and D. R. Clarke, J. App. Phys. 81 (1997), p.6357.

Google Scholar

[9] D.M. Bangall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70 (1997), p.2230.

Google Scholar

[10] Sang-Hun Jeong, Bong-Soo Kim, and Byung-Teak Lee, Appl. Phys. Lett. 82 (2003), p.2625.

Google Scholar

[11] J. J. Wu, S. C. Liu, Adv. Mater. 14 (2002), pp.215-218.

Google Scholar

[12] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao1, J. L. Liu and W. P. Beyermann, Appl. Phys. Lett. 87 (2005), p.152101.

Google Scholar

[13] S. A. Studenikin, Nickolay Golego, and Michael Cocivera , J. Appl. Phys. 83(1998), p.2104.

Google Scholar

[14] N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J. B. Leriche and J. M. Tarascon, Thin Solid Films 360 (2000), pp.233-240.

DOI: 10.1016/s0040-6090(99)01098-6

Google Scholar

[15] Dinghua Bao, Haoshuang Gu and Anxiang Kuang, Thin Solid Films 312 (1998), pp.37-39.

Google Scholar

[16] E. Bacaksiz, M. Parlak, M. Tomakin , A. Özcelik, M. Karakız, M. Altunbas, Journal of Alloys and Compounds 466 (2008), p.447–450.

Google Scholar

[17] L. Znaidi, G.J.A.A. Soler-Illia, R. Le Guennic, A. Kanaev and C. Sanchez. J. Sol–Gel Sci. Tech. 26 (2003), p.817.

DOI: 10.1023/a:1020795515478

Google Scholar

[18] M. Dutta, S. Mridha, D. Basak, Applied Surface Science 254 (2008), p.2743–2747.

Google Scholar

[19] Sang Hoon Yoon, Dan Liu, Dongna Shen, Minseo Park and Dong-Joo Kim, J Mater Sci. 43(2008), p.6177–6181.

Google Scholar

[20] Rizwan Wahab, S.G. Ansari, Young Soon Kim, Minwu Song, Hyung-Shik Shin, Applied Surface Science 255 (2009) p.4891–4896.

Google Scholar

[21] V. Fathollahi, M. Mohammadpour Amini, Materials Letters 50 (2001), p.235–239.

Google Scholar

[22] A. Guillén-Santiago, M. de la L. Olvera, A. Maldonado, R. Asomoza, D. R. Acosta, phys. stat. sol. (a) 201 (2004), p.952–959.

Google Scholar

[23] Yaoming Li, Linhua Xu, Xiangyin Li, Xingquan Shen, Ailing Wang, Applied Surface Science 256 (2010), p.4543–4547.

Google Scholar

[24] Parmod Sagar, P.K. Shishodia, R.M. Mehra, Applied Surface Science 253 (2007), p.5419–5424.

DOI: 10.1016/j.apsusc.2006.12.026

Google Scholar

[25] Kun-YangWu, Cheng-ChuanWang, Dong-Hwang Chen, Nanotechnology 18 (2007), p.305604.

Google Scholar

[26] S.M. Rozati S. Moradi, S. Golshahi, R. Martins , E. Fortunato, Thin Solid Films 518 (2009), p.1279–1282.

DOI: 10.1016/j.tsf.2009.03.231

Google Scholar

[27] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice-Hall, Inc., New Jersey, (2001), p.388.

Google Scholar

[28] A. Maldonado a, S. Tirado-Guerra b, M. delaL. Olvera, Journal of Physics and Chemistry of Solids 70 (2009), p.571–575.

Google Scholar

[29] Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Applied Surface Science 241 (2005), p.303–308.

Google Scholar

[30] James B. Miller, Hsin-Jung Hsieh, Bret H. Howard , Esteban Broitman, Thin Solid Films 518 (2010), p.6792–6798.

DOI: 10.1016/j.tsf.2010.06.032

Google Scholar

[31] S. Joon Kwon, Jae-Hwan Park, and Jae-Gwan Park, PHYSICAL REVIEW E 71(2005), p.011604.

Google Scholar

[32] Soumendra K. Basu, Aaron M. Bergstreser, L. F. Francis L. E. Scriven, and A. V. McCormick, JOURNAL OF APPLIED PHYSICS 98(2005), p.063507.

DOI: 10.1063/1.2043255

Google Scholar

[33] Chien-Yie Tsay, Hua-Chi Cheng, Chin-Yi Chen, Kan-Ju Yang, Chung-Kwei Lin, Thin Solid Films 518 (2009), p.1603–1606.

Google Scholar

[34] L. Znaidi, G.J.A.A. Soler Illia, S. Benyahia, C. Sanchez, A.V. Kanaev, Thin Solid Films 428 (2003), p.257–262.

DOI: 10.1016/s0040-6090(02)01219-1

Google Scholar

[35] D. Vernardou , G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsarakis, Thin Solid Films 515 (2007), p.8764–8767.

DOI: 10.1016/j.tsf.2007.03.108

Google Scholar

[36] P.K. Sharma, M.H. Jilavi, V.K. Varadan, H. Schmidt, Journal of physics and chemistery of Solids 63 (2002), p.171–177.

Google Scholar