Quantized Kalman Filter for Sensor Networks with Random Packet Dropouts

Article Preview

Abstract:

Based on the projection theory and the uniform quantization method, a quantized Kalman filter is presented for sensor networks with random packet dropouts from sensors to the fusion center (filter). The bandwidths are scheduled by the optimality index that energy consumption is minimized under a given performance constraint. Compared with the filter without quantization, the quantized filter given can reduce the energy consumption and has an effective tracking performance. A simulation example demonstrates the effectiveness of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 219-220)

Pages:

1040-1044

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. M. Gray, and D. L. Neuhoff, Quantization, IEEE Trans. Information Theory, vol. 44, no. 6, Oct. 1998, pp.2325-2383.

DOI: 10.1109/18.720541

Google Scholar

[2] M. Sahebsara, T. Chen, and S. L. Shah, Optimal H2 filtering in networked control systems with multiple packet dropout, IEEE Trans. on Automatic Control, vol. 52, no. 8, pp.1508-1513, (2007).

DOI: 10.1109/tac.2007.902766

Google Scholar

[3] S. L. Sun, L. H. Xie, W. D. Xiao, and Y. C. Soh, Optimal Linear Estimation for Systems with Multiple Packet Dropouts, Automatica, vol. 44, no. 5: pp.1333-1342, (2008).

DOI: 10.1016/j.automatica.2007.09.023

Google Scholar

[4] S. L. Sun, and W. D. Xiao, Distributed Weighted Fusion Estimators with Random Delays and Packet Dropping, Circuits Systems Signal Processing, vol. 26, No. 4, 2007. pp.591-605.

DOI: 10.1007/s00034-007-4009-5

Google Scholar

[5] S. L. Sun, Optimal Estimators for Systems With Finite Consecutive Packet Dropouts, IEEE Signal Processing Letters, vol. 16, no. 7, pp.557-560, (2009).

DOI: 10.1109/lsp.2009.2018909

Google Scholar

[6] J. J. Xiao, S. G. Cui, Z. Q. Luo, and A. J. Goldsmith, Power scheduling of universal decentralized estimation in sensor networks, IEEE Trans. Signal Processing, vol. 54, no. 2, pp.413-422, (2006).

DOI: 10.1109/tsp.2005.861898

Google Scholar

[7] Z. Q. Luo, Universal Decentralized Estimation in a Bandwidth Constrained Sensor Network, IEEE Trans. Information Theory, vol. 51, no. 6, pp.2210-2219, June (2005).

DOI: 10.1109/tit.2005.847692

Google Scholar

[8] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations, IEEE Trans. Signal Processing, vol. 54, no. 1, pp.2617-2624, (2006).

DOI: 10.1109/tsp.2006.882059

Google Scholar

[9] S. L. Sun, J. Y. Lin, L. H. Xie, and W. D. Xiao, Quantized Kalman Filtering, IEEE 22nd International Symposium on Intelligent Control, USA: IEEE, pp.7-12, (2007).

DOI: 10.1109/isic.2007.4450852

Google Scholar

[10] M. Y. Fu, and C. E. d. Souza, State estimation for linear discrete-time systems using quantized measurements, Automatica, vol. 45, pp.2937-2945, (2009).

DOI: 10.1016/j.automatica.2009.09.033

Google Scholar

[11] L. H. Xie, and L. Shi, State Estimation over Unreliable Network, Proceedings of the 7th Asian Control Conference, Hong Kong, China, pp.453-458, August 27-29, (2009).

Google Scholar

[12] B. D. O. Anderson, and J. B. Moore, Optimal Filtering. Englewood Cliffs, New Jersey: Prentice-Hall, (1979).

Google Scholar