[1]
N. Bellom, A. Bellouquid and E. De Angelis, The modelling of the immune competitionby generalized kinetic (Boltzmann) models: Review and research perspectives, Math. Compu. Model. 37 (2003), 1131-1142.
DOI: 10.1016/s0895-7177(03)80007-9
Google Scholar
[2]
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci. 15(2005), 1685-1734.
DOI: 10.1142/s0218202505000947
Google Scholar
[3]
H. Enderling, A.R.A. Anderson, M. A. J. Chaplain, A. J. Munro and J. S. Vaidya.mathematical modelling of radiotherapy strategies for early breath cancer. theor. Biol. 241(2006), 158-171.
DOI: 10.1016/j.jtbi.2005.11.015
Google Scholar
[4]
A.Pazy, Semigroups of Linear Operators and Applications to Partial Dierential Equations, Springer-Verlag, Berlin, 1983.
Google Scholar
[5]
H. A. Levine and B. P. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math. 57 (1997), 683-730.
DOI: 10.1137/s0036139995291106
Google Scholar
[6]
M. R. Owen, H. M. Byrne and C. E. Lewis, Mathematical modelling of the modeling of the use of macrophages as vehicles for drug delivery to hypoxic tumour ,sites, J. theor. Biol. 226(2004), 377-391
DOI: 10.1016/j.jtbi.2003.09.004
Google Scholar
[7]
Janet Dyson, Eva Sanchez, Rosanna Villella-Bressan, Glenn Webb, An age and spatially structured model of tumor invasion with haptotaxis, Discrete and Continuous Dynamical Systems-Series B, Volume 8,Number 1, July 2007.
DOI: 10.1080/08898480802010159
Google Scholar
[8]
N. Iwasaki, Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary condition in exterior domains, Publications of the Reaseach Institute for Mathmatical Sciences of Kyoto University, 5(1969), 193-218.
DOI: 10.2977/prims/1195194630
Google Scholar
[9]
B. Lazzari and R. Nibbi, On the exponential decay in thermoelasticity without energy dissipation and of type III in presence of an absorbing boundary, J. Math. Anal. Appl., 338(2008), 317-329.
DOI: 10.1016/j.jmaa.2007.05.017
Google Scholar
[10]
J. E. Munoz Rivera and Y. Qin, Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory, Nonlinear Analysis, 51(2002), 11-32.
DOI: 10.1016/s0362-546x(01)00810-0
Google Scholar