Researches on a Class of Reaction-Diffusion Thermo-Plastic Material Equations

Article Preview

Abstract:

This paper deals with a class of hyperbolic thermo-plastic material equation. The equation includes a reaction-diffusion-taxis partial differential equation, a reaction-diffusion partial differential equation. In the actual course of the discussion, we append a motility term in the equation. Then, the existence of unique global strong solution is proved using the theory of fractional powers of analytic semi group generators to new equation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 219-220)

Pages:

1022-1025

Citation:

Online since:

March 2011

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Bellom, A. Bellouquid and E. De Angelis, The modelling of the immune competitionby generalized kinetic (Boltzmann) models: Review and research perspectives, Math. Compu. Model. 37 (2003), 1131-1142.

DOI: 10.1016/s0895-7177(03)80007-9

Google Scholar

[2] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci. 15(2005), 1685-1734.

DOI: 10.1142/s0218202505000947

Google Scholar

[3] H. Enderling, A.R.A. Anderson, M. A. J. Chaplain, A. J. Munro and J. S. Vaidya.mathematical modelling of radiotherapy strategies for early breath cancer. theor. Biol. 241(2006), 158-171.

DOI: 10.1016/j.jtbi.2005.11.015

Google Scholar

[4] A.Pazy, Semigroups of Linear Operators and Applications to Partial Dierential Equations, Springer-Verlag, Berlin, 1983.

Google Scholar

[5] H. A. Levine and B. P. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math. 57 (1997), 683-730.

DOI: 10.1137/s0036139995291106

Google Scholar

[6] M. R. Owen, H. M. Byrne and C. E. Lewis, Mathematical modelling of the modeling of the use of macrophages as vehicles for drug delivery to hypoxic tumour ,sites, J. theor. Biol. 226(2004), 377-391

DOI: 10.1016/j.jtbi.2003.09.004

Google Scholar

[7] Janet Dyson, Eva Sanchez, Rosanna Villella-Bressan, Glenn Webb, An age and spatially structured model of tumor invasion with haptotaxis, Discrete and Continuous Dynamical Systems-Series B, Volume 8,Number 1, July 2007.

DOI: 10.1080/08898480802010159

Google Scholar

[8] N. Iwasaki, Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary condition in exterior domains, Publications of the Reaseach Institute for Mathmatical Sciences of Kyoto University, 5(1969), 193-218.

DOI: 10.2977/prims/1195194630

Google Scholar

[9] B. Lazzari and R. Nibbi, On the exponential decay in thermoelasticity without energy dissipation and of type III in presence of an absorbing boundary, J. Math. Anal. Appl., 338(2008), 317-329.

DOI: 10.1016/j.jmaa.2007.05.017

Google Scholar

[10] J. E. Munoz Rivera and Y. Qin, Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory, Nonlinear Analysis, 51(2002), 11-32.

DOI: 10.1016/s0362-546x(01)00810-0

Google Scholar