Defaultable Binary Tree Algorithm for Convertible Bond with Finite Maturity

Article Preview

Abstract:

The credit risk is introduced into the pricing model of convertible bond in this paper. The main results of paper have three aspects: (1) By modifying the dynamic motion of stock, a defaultable stock process is obtained in neutral risk measure, then the pricing model of convertible bond with finite maturity and credit is proposed. (2) The defaultable binary tree algorithm is proposed, and the convergence of algorithm is proved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 219-220)

Pages:

165-169

Citation:

Online since:

March 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Igor Pikovsky Mihai Sirbu and Steven E.Shreve, Perpetual convertible bonds, SIAM J.Control Optim vol.43 (2004), P.58~85.

DOI: 10.1137/s0363012902412458

Google Scholar

[2] Steven E.Shreve Mihai Sirbu, A two person game for pricing convertible bonds, SIAM J.Control Optim vol.45 (2006),P.1058~1539.

DOI: 10.1137/050630222

Google Scholar

[3] J. J. McConnell and E. S. Schwartz, Lyon taming, Journal of Finance vol.41 (1986),P.561~576.

Google Scholar

[4] W. Cheung and I. Nelken, Costing the converts, Risk vol.7 (1994), P.47~49.

Google Scholar

[5] T. S. Y. Ho and D. M. Pfeffer, Convertible bonds: Model, value attribution, and analytics, Financial Analysts Journal vol.52 (1996), P.35~44.

DOI: 10.2469/faj.v52.n5.2022

Google Scholar

[6] K. Tsiveriotis and C. Fernandes, Valuing convertible bonds with credit risk, Journal of Fixed Income vol.8 (1998), P.95~102.

DOI: 10.3905/jfi.1998.408243

Google Scholar

[7] A. B. Yigitbasioglu, Pricing convertible bonds with interest rate, equity, credit and fx risk, Discussion paper, ISMA Center vol.14 (2001).

DOI: 10.2139/ssrn.294464

Google Scholar

[8] Christoph Kuhn and Kees van Schaik, Perpetual convertible bonds with credit risk, An International Journal of Probability and Stochastics Processes vol.14 (2008), P.1~26.

DOI: 10.1080/17442500802263888

Google Scholar

[9] Hsing-hua Huang Szu-lang Liao, Valuation and optimal strategies of convertible bonds, The Journal of Futures Markets vol.26 (2006), P.895~922.

DOI: 10.1002/fut.20219

Google Scholar

[10] T. R. Bielecki, S. Crepey, M. Jeanblanc and M. Rutkowski, Arbitrage pricing of defaultable game options with applications to convertible securities, Quantitative Finance,vol.8(8)(2008),P.795-810.

DOI: 10.1080/14697680701401083

Google Scholar

[11] T. R. Bielecki, S. Crepey, M. Jeanblanc and M. Rutkowski, Valuation and hedging of defaultable game options in a hazard process model, Journal of Applied Mathematics and Stochastic Analysis, vol.22(3) (2009), P.1-33.

DOI: 10.1155/2009/695798

Google Scholar

[12] T. R. Bielecki, S. Crepey, M. Jeanblanc and M. Rutkowski, Defaultable options in a markovian intensity model of credit risk, Mathematical Finance, vol.18(4) (2008), P.493-518.

DOI: 10.1111/j.1467-9965.2008.00345.x

Google Scholar