Research on the Curing Behaviour and Morphology of an Epoxy/OMMT Nanocomposite System

Article Preview

Abstract:

The curing behaviour of an epoxy/OMMT nanocomposites system which was composed of a bifunctional epoxy resin with an anhydride curing agent and OMMT was investigated. Differential scanning calorimetry (DSC) was used to investigate the curing behaviour of the nanocomposites system. As for the nanocomposites system containing different amounts of OMMT, the values of activation energy, reaction order, theoretic gelling temperature and theoretic curing temperature were evaluated by kinetic equations. And the effect of OMMT on the curing reaction and the curing reaction mechanism of the system were discussed. The results showed that the curing process is at 100°C for 1hr, 170°C for 2hr when the OMMT content is 3%. XRD was used to observe the interlayer spacing of the OMMT and SEM was used to survey the morphology of nanocomposites system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-227

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR: Polymer. Vol. 43 (2002), p.5915.

Google Scholar

[2] Miyagawa H, Rich MJ, Drzal LT. J Polym Sci, Part B: Polym. Phys. Vol. 42 (2004), p.4384.

Google Scholar

[3] Yasmin A, Abot JL, Daniel IM: Scripta Mater. Vol. 49 (2003), p.81.

Google Scholar

[4] Jan IN, Lee TM, Chiou KC, Lin JJ: Ind Eng Chem Res. Vol. 44(2005), p. (2086).

Google Scholar

[5] Ratna D, Becker O, Krishnamurthy R, Simon GP, Varley RJ: Polymer. Vol. 44 (2003), p.7449.

Google Scholar

[6] Hsueh HB, Chen CY: Polymer. Vol. 44 (2003), p.5275.

Google Scholar

[7] Park JH, Jana SC: Polymer. Vol. 44 (2003), p. (2091).

Google Scholar

[8] Park SJ, Seo DI, Lee JR. J: Colloid Interface Sci. Vol. 251 (2002), p.160.

Google Scholar

[9] Yeh JM, Liou SJ, Lai CY, Wu PC, Tsai TY: Chem Mater. Vol. 13 (2001), p.1131.

Google Scholar

[10] Becker O, Varley R, Simon G: Polymer. Vol. 43(2002), p.4365.

Google Scholar

[11] Osman MA, Mittal V, Lusti HR: Macromol Rapid Commun. Vol. 25 (2004), p.1145.

Google Scholar

[12] Janis MB, David C, Richard AV: Chem Mater. Vol. 12 (2000), p.3376.

Google Scholar

[13] Zammarano M, Franceschi M, Bellayer S, Gilman JW, Meriani S: Polymer Vol. 46 (2005), p.9314.

DOI: 10.1016/j.polymer.2005.07.050

Google Scholar

[14] Liu YH, Zheng SX, Nie KM: Polymer. Vol. 46 (2005), p.12006.

Google Scholar

[15] Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L: Polymer. Vol. 46 (2005), p.10506.

DOI: 10.1016/j.polymer.2005.08.028

Google Scholar

[16] Ni Y, Zheng SX, Nie KM: Polymer. Vol. 45 (2004), p.5557.

Google Scholar

[17] Liu YL, Hsu CY, Wei WL, Jeng RJ: Polymer. Vol. 44 (2003), p.5159.

Google Scholar

[18] Yaping Zheng, Ying Zheng, Rongchang Ning: Materials Letter. Vol. 57 (2003), p.2940.

Google Scholar

[19] S.K. Ooi, W.D. Cook, G.P. Simon, and C.H. Such: Polymer. Vol. 41(2000), p.3639.

Google Scholar

[20] Homer E Kissinger: Analytical Chemistry. Vol. 29 (1957), p.1702.

Google Scholar

[21] Crane L W.: Polymer Science. Vol. 11 (1973), p.11.

Google Scholar