Finite Element Simulation of Quick – Stop Experiments for Better Understanding of Chip Formation in Grinding

Article Preview

Abstract:

Several authors have previously simulated chip formation and their behaviour at the orthogonal cutting process. In contrast the chip formation for grinding was less investigated. This paper introduces a quick-stop device which allows easy investigation of the chip formation for the grinding process. For this process a workpiece forced by compressed air is shot against a single grain diamond with a large negative rake angle. Cutting forces were measured with a piezo electric sensor and discussed for a cutting speed range from 10m/s up to 30m/s. In Abaqus/Explicit a lagrangian formulation based finite element model was built to describe the chip formation for the grinding process. Chip formation, stress and heat distribution in the workpiece material can be calculated by this simulation model. The material behaviour was described with the Johnson Cook law. The simulation results show a good correlation compared to the quick stop experiments. All in all this simulation leads to a better understanding of the chip formation during grinding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

764-773

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Ohbuchi and T. Obikawa: Adiabatic shear in chip formation with large negative rake angle, International Journal of Mechanical Sciences 47 (2005), pp.1377-1392

DOI: 10.1016/j.ijmecsci.2005.05.003

Google Scholar

[2] Y. Ohbuchi and T. Obikawa: Surface Generation Model in Grinding with Effect of Grain Shape and Cutting Speed, JSME International Journal, Vol. 49, No.1 (2006), pp.114-120

DOI: 10.1299/jsmec.49.114

Google Scholar

[3] F. Klocke: Modelling and simulation in grinding, 1st European Conference on Grinding, Aachen, Fortschritt-Berichte VDI Reihe 2 Fertigungstechnik (2003), p.8.1-8.27

Google Scholar

[4] E. Brinksmeier, F. Klocke, A. Giwerzew and D. Vucetic: Spanbildungsmechanismen beim Schleifen mit niedrigen Schnittgeschwindigkeiten, Industrie Diamanten Rundschau, IDR 36, volume 4 (2002), pp.346-356

Google Scholar

[5] A. Baus: Modellierung von Schleifprozessen – Eine komplexe Herausforderung, Laboratory for Machine Tools and Production Engineering, RWTH Aachen University (2002)

Google Scholar

[6] H.-W. Hoffmeister and T. Weber: Simulation of Grinding by means of the Finite Element Analysis, 3rd International Machining & Grinding, Cincinnati, USA (1999)

Google Scholar

[7] S. Okuyama, T. Nishihara, S. Kawamura and S. Hanasaki: Study on the Geometrical Accuracy in Surface Grinding – Thermal Deformation of Workpiece in Traverse Grinding, Int. J., Japan Soc. Prec. Eng., 28/4 (1994): pp.13-23

DOI: 10.1016/0141-6359(94)90270-4

Google Scholar

[8] K. Weinert and M. Schulte: Profilschleifen hochharter Cr- und PM-Legierungen mit konventionellen Schleifmitteln, Annual "Grinding, Honing, Lapping and Polishing", 61st edition, Vulkan Verlag (2004), pp.128-136

Google Scholar

[9] G. Warnecke and U. Zitt: Kinematic Simulation for Analyzing and Predicting High-Performance Grinding Processes, Annals of the CIRP 47/1 (1998), pp.265-270

DOI: 10.1016/s0007-8506(07)62831-5

Google Scholar

[10] R. Rentsch and E. Brinksmeier: Tribology Aspects in state of the art MD cutting simulations, 8th CIRP Int. Workshop on Modeling of Machining Operations, Chemnitz, Germany (2005), pp.405-408

Google Scholar

[11] C. Siemers, M. Bäker, D. Mukherij and J. Rösler: Microstructure Evolution in Shear bands during the Chip Formation of Ti6Al4V, Proceedings of Ti-2003 Wiley-VCH, Weinheim (2003), pp.839-846

Google Scholar

[12] C. Siemers, Z. Badya, T. Leemet and J. Rösler: Development of Advanced beta-Titanium Alloys, Proceedings of the 8th AMMT'09 Conference, St. Petersburg, Russia (2009)

Google Scholar

[13] J.T. Lin, D. Bhattacharyya and W. G. Ferguson: Chip Formation in the Machining of SiC-particle-Reinforced Aluminium-Matrix Composites, Composites Science and Technology 58 (1997), pp.285-291

DOI: 10.1016/s0266-3538(97)00126-7

Google Scholar

[14] C.L. Wu, K.S. Wang and L.C. Tsai: A new electromagnetic quick stop device for metal cutting studies, Int. Journal of Advanced Manufacturing Technology (2006), pp.853-859

DOI: 10.1007/s00170-005-2608-y

Google Scholar

[15] S.L. Soo, D.K. Aspinwall and R.C. Dewes: 3D FE modelling of the cutting of Inconel 718, Journal of Materials Processing Technology 150 (2004), pp.116-123

DOI: 10.1016/j.jmatprotec.2004.01.046

Google Scholar

[16] A. Gente: Spanbildung von TiAl6V4 und Ck45N bei sehr hohen Schnittgeschwindigkeiten, Institute of Machine Tools and Production Technology, Technical University Braunschweig (2002), Vulkan Verlag

Google Scholar

[17] G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, 7th International Symposium on Ballistics (1983), pp.514-546

Google Scholar

[18] T.Mabrouki and J.-F. Rigal: A contribution to a qualitative understanding of thermo- mechanical effects during chip formation in hard turning, Journal of Materials Processing Technology, Vol 176 (2006), pp.214-221

DOI: 10.1016/j.jmatprotec.2006.03.159

Google Scholar

[19] A. Shrot and M. Bäker: Is it possible to identify Johnson-Cook law parameters from machining simulations, International Journal of Material Forming, Vol. 3 Suppl. 1 (2010), pp.443-446

DOI: 10.1007/s12289-010-0802-4

Google Scholar

[20] Y.B. Guo, Q. Wen and K.A. Woodbury: Dynamic Material Behaviour Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations, Journal of Manufacturing Science and Engineering, Vol. 128 (2006), pp.749-759

DOI: 10.1115/1.2193549

Google Scholar

[21] H.-W. Hoffmeister and T. Wessels: Thermomechanische Wirkmechanismen bei der Hochgeschwindigkeitszerspanung von Titan- und Nickelbasislegierungen, edited by H.K. Tönshoff and F. Hollmann, High speed cutting of metal-based materials, Wiley-VCH, Weinheim (2005), pp.470-49

DOI: 10.1002/3527605142.ch21

Google Scholar