Theoretical and Experimental Determination of Geometry Deviation in Continuous Path Controlled OD Grinding Processes

Article Preview

Abstract:

A simulation method for the continuous path controlled grinding process is described in this paper. The process model allows a virtual analysis of the process parameters, different input conditions and their influence concerning workpiece geometry. The machine structure is represented by a structural dynamic system. The dynamic influence of the machine axes is considered by its control system parameters. In this machine model, the positioning error of the axes can be calculated in relation to the reference position. This is used to compute the local engagement numerically. The process force is estimated by means of an empirical grinding force model. Hence, the overall process force can be calculated and fed back into the dynamic model. Closed-loop modeling allows to rate the influence of different parameters with respect to process errors. Finally, a parameter study and the model verification under real conditions are presented on the basis of the wheel head oscillating pin grinding process of crankshafts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

784-793

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Becker: Bahngesteuertes Schleifen von Kurbelwellen. PhD Thesis, Universität Hannover. (2004)

Google Scholar

[2] H. J. Wedeniwski: Technologie des rechnergeführten Schleifens. Anwendungsbereich: Unrundbearbeitung. Tectum-Verl, Marburg. (2007)

Google Scholar

[3] T. Steffen: Optimierung des Nockenform-Schleifprozesses auf der Basis von Simulation und geometrischer Messtechnik. PhD Thesis, RWTH Aachen. (1995)

Google Scholar

[4] N. Chiu and S. Malkin.: Computer Simulation for Cylindrical Plunge Grinding. CIRP Annals - Manufacturing Technology Vol. 42, 1 (1993), p.383–387

DOI: 10.1016/s0007-8506(07)62467-6

Google Scholar

[5] B. Denkena, M. Deichmueller, M. Kröger, and K. M. Popp: Geometrical analysis of the complex contact area for modeling the local distribution of process forces in tool grinding. In Proceedings of the 1st International Conference on Process Machine Interactions (2008), p.289–298

Google Scholar

[6] K. Weinert, H. Blum, T. Jansen, and A. Rademacher: Simulation based optimization of the NC-shape grinding process with toroid grinding wheels. Prod. Eng. Res. Dev. (Production Engineering) Vol. 1 (2007), p.245–252

DOI: 10.1007/s11740-007-0042-8

Google Scholar

[7] C. Brecher, M. Esser, and S. Witt.: Interaction of manufacturing process and machine tool. CIRP Annals - Manufacturing Technology Vol. 58, 2 (2009), p.588–607

DOI: 10.1016/j.cirp.2009.09.005

Google Scholar

[8] M. Deichmüller, B. Denkena, K. M. de Payrebrune, M. Kröger, S. Wiedemann, A. Schröder, and C. Carstensen: Determination of static and dynamic deflections in tool grinding using a dexel-based material removal simulation. In Proceedings of the 2nd International Conforence Process Machine Interactions. (2010)

DOI: 10.1007/978-3-642-32448-2_7

Google Scholar

[9] O. Schütte: Analyse und Modellierung nichtlinearer Schwingungen beim Außenrundeinstechschleifen. PhD Thesis, Universität Hannover. (2003)

Google Scholar

[10] Marposs S. p. A.: Fenar L, The Easy Solution for Shape Control. an orbital gauge application able to perform shape analysis without any part uploading. Press report (2003)

Google Scholar

[11] Leibnitz Universität Hannover.: DE-10-2010-012829 Verfahren zur Erkennung von Aufmaßen während der Bearbeitung von Kreisexzentern. Patent pending, day of registration 28.05.(2010)

Google Scholar

[12] Information on http://www.automation.siemens.com/doconweb SINUMERIK 840C SIMODRIVE 611-D Installation Instructions. Installation Guide. Accessed 6 December (2010)

Google Scholar

[13] B. Denkena, H. Henning and R. Fischer: Wirtschaftliche Prozessführung bei der Hartfeinbearbeitung von Kurbelwellen. Optimale Auslegung und aktive Verbesserung von bahngesteuerten Schleifprozessen. ZWF - Zeitschrift für wirtschaftlichen Fabrikbetrieb Vol. 104, 3 (2009), p.141–146

DOI: 10.3139/104.110034

Google Scholar

[14] H.-K. Tönshoff, J. Peters, I. Inasaki and T. Paul: Modelling and Simulation of Grinding Processes. CIRP Annals - Manufacturing Technology Vol. 41, 2 (1992), p.677–688

DOI: 10.1016/s0007-8506(07)63254-5

Google Scholar

[15] E. Brinksmeier, J. Aurich, E. Govekar, C. Heinzel, H.-W. Hoffmeister, F. Klocke, J. Peters, R. Rentsch, D. Stephenson and E. Uhlmann: Advances in Modeling and Simulation of Grinding Processes. CIRP Annals - Manufacturing Technology Vol. 55, 2 (2006), p.667–696

DOI: 10.1016/j.cirp.2006.10.003

Google Scholar

[16] H. Mushardt: Beitrag zur Optimierung mehrstufiger Schleifprozesse. PhD Thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig. (1980)

Google Scholar