Kinematic Model for Ultrasonic-Assisted Manufacturing of Bore Holes with Undefined Cutting Edges

Article Preview

Abstract:

Hybrid machining represents a possibility for technological progress in production. As a part of hybrid machining processes, ultrasonic-assisted machining is often used to manufacture materials that are difficult to machine since process forces can be significantly reduced and the material removal rate (MRR) can be increased. This paper describes an approach for a model for ultrasonic-assisted drilling with undefined cutting edges. The ultrasonic vibration can theoretically be applied in axial, tangential or radial direction or it can be superimposed. An axial excitation, parallel to the feed direction, is selected in the presented model. Since the drilling is superimposed with a high-frequency vibration, the trajectories of the grains are modified. Therefore, an analytical-kinematic model is established, which is characterised by a periodical contact loss of tool and workpiece. Due to the modified kinematics, process-specific parameters, such as impact velocity or the ratio between vibration and cutting speed, are important, in addition to conventional cutting parameters. Such process parameters are useful to describe dominant material removal mechanisms in ultrasonic-assisted machining. Moreover, two models on tool topography are presented in this paper. Based on an analytical approach, the material removal rate, established by adding up the individual grain removals, is calculated. The quality of the developed models is validated by the standard calculation of the material removal rate by feed rate and tool cross section. The results show, that it must be taken into account that the grains do not hit an even surface. The grain distribution is also an important aspect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

794-803

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ahmed, N.; Mitrofanov, A. V.; Babitsky, V. I.; Silberschmidt, V. V.: Analysis of forces in ultrasonically assisted turning. In: Journal of Sound and Vibration, Vol. 308 (2007), p.845–854.

DOI: 10.1016/j.jsv.2007.04.003

Google Scholar

[2] Heisel, U.; Wallaschek, J.; Eisseler, R.; Potthast, C.: Ultrasonic deep hole drilling in electrolytic Cooper ECu 57. In: CIRP Annals - Manufacturing Technology, Vol. 57 (2008), p.53–56.

DOI: 10.1016/j.cirp.2008.03.078

Google Scholar

[3] Moriwaki, T.; Shamoto, E.: Ultrasonic Elliptical Vibration Cutting. In: Annals of the CIRP, Vol. 44/1 (1995), p.31–34.

DOI: 10.1016/s0007-8506(07)62269-0

Google Scholar

[4] Babitsky, V. I.; Astashev, V. K.; Meadows, A.: Vibration excitation and energy transfer during ultrasonically assisted drilling. In: Journal of Sound and Vibration, Vol. 308 (2007), p.805–814.

DOI: 10.1016/j.jsv.2007.03.064

Google Scholar

[5] Brehl, D. E.; Dow, T. A.: Review of vibration-assisted machining. In: Precision Engineering, Vol. 32 (2008), p.153–172.

DOI: 10.1016/j.precisioneng.2007.08.003

Google Scholar

[6] Klocke, F.; Demmer, A.; Heselhaus, M.: Material removal mechanisms in ultrasonic-assisted diamond turning of brittle materials. In: International Journal of Product Technology, Vol. 20/4 (2004), p.231–238.

DOI: 10.1504/ijmpt.2004.004249

Google Scholar

[7] Neugebauer, R.; Stoll, A.: Ultrasonic application in drilling. In: Journal of Materials Processing Technology, Vol. 149 (2004), p.633–639.

DOI: 10.1016/j.jmatprotec.2003.10.062

Google Scholar

[8] Thoe, T. B.; Aspinwall, D. K.; Wise, M. L. H.: Review on Ultrasonic Machining. In: International Journal of Machine Tools & Manufacture, Vol. 38/4 (1998), p.239–255.

DOI: 10.1016/s0890-6955(97)00036-9

Google Scholar

[9] Astashev, V. K.; Babitsky, V. I.: Ultrasonic Processes and Machines. Babitsky, V. I.; Wittenburg, J. (Ed. ) (Foundations of Engineering Mechanics). Berlin, Heidelberg, New York: Springer (2007).

DOI: 10.1007/978-3-540-72061-4_3

Google Scholar

[10] Chang, Simon S. F.; Bone, Gary M.: Burr size reduction in drilling by ultrasonic assistance. In: Robotics and Coputer-Integrated Manufacturing, Vol. 21 (2005), p.442–450.

DOI: 10.1016/j.rcim.2004.11.005

Google Scholar

[11] Takeyama, H.; Kato, S.: Burrless drilling by means of ultrasonic vibration. In: Annals of the CIRP, Vol. 40/1 (1991), p.83–86.

DOI: 10.1016/s0007-8506(07)61939-8

Google Scholar

[12] Blaha, F.; Langenecker, B.: Dehnung von Zink-Kristallen unter Ultraschalleinwirkung. In: Die Naturwissenschaften, Vol. 42 (1955), p.556.

DOI: 10.1007/bf00623773

Google Scholar

[13] Littmann, W.; Storck H.; Wallaschek J.: Reibung bei Ultraschallschwingungen. In: VDI-Berichte, Vol. 1736 (2002), p.231–237.

Google Scholar

[14] Brinksmeier, E.; Aurich, J. C.; Govekar, E.; Heinzel, C. et al.: Advances in Modeling and Simulation of Grinding Processes. In: Annals of the CIRP, Vol. 55/2 (2006), p.667–696.

DOI: 10.1016/j.cirp.2006.10.003

Google Scholar

[15] Fritsch, A.: Schleifen von Cermets. Dissertation Universität Hannover, (1997).

Google Scholar

[16] Kassen, G.: Beschreibung der elementaren Kinematik des Schleifvorgangs. Dissertation RWTH Aachen, (1969).

Google Scholar

[17] Tönshoff, H. -K; Peters, J.; Inasaki, I.; Paul, T.: Modelling and Simulation of Grinding Processes. In: Annals of the CIRP, Vol. 41/2 (1992), p.677–688.

DOI: 10.1016/s0007-8506(07)63254-5

Google Scholar

[18] Friemuth, T.: Schleifen hartstoffverstärkter keramischer Werkzeuge. Dissertation Universität Hannover, (1999).

Google Scholar

[19] Aurich, J. C.; Braun, O.; Warnecke, G.: Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation. In: CIRP Annals - Manufacturing Technology, Vol. 52 (2003), H. 1, p.275–280.

DOI: 10.1016/s0007-8506(07)60583-6

Google Scholar

[20] Pinto, F. W.; Vargas, G. E.; Wegener, K.: Simulation for optimizing grain pattern on Engineered Grinding Tools. In: CIRP Annals - Manufacturing Technology, Vol. 57 (2008), p.353–356.

DOI: 10.1016/j.cirp.2008.03.069

Google Scholar

[21] Astashev, V. K.; Babitsky, V. I.: Ultrasonic cutting as a nonlinear (vibro-impact) process. In: Ultrasonics, Vol. 36 (1998), p.89–96.

DOI: 10.1016/s0041-624x(97)00101-7

Google Scholar

[22] Littmann, W.: Piezoelektrische, resonant betriebene Ultraschall-Leitungswandler mit nichtlinearen mechanischen Randbedingungen. Dissertation Universität Paderborn, (2003).

Google Scholar

[23] Wiercigroch, M.; Wojoweda, J.; Krivtsov, A. M.: Dynamics of ultrasonic percussive drillling of hard rocks. In: Journal of Sound and Vibration, Vol. 280 (2005), p.739–757.

DOI: 10.1016/j.jsv.2003.12.045

Google Scholar

[24] Daus, N. -A: Ultraschallunterstütztes Quer-Seiten-Schleifen. Dissertation TU Berlin, (2004).

Google Scholar

[25] Storck, H.; Littmann, W.; Wallaschek, J.; Mracek, M.: The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors. Ultrasonics Vol. 40 (2002), pp.379-383.

DOI: 10.1016/s0041-624x(02)00126-9

Google Scholar

[26] Heisel, U.; Eber, R.: Ultraschallbohren von Gestein- Untersuchungen zum Potential ultraschallgestützter Verfahren in der Gesteinsbearbeitung. In: wt-online, Vol. 100 (2010), H. 1/2, S. 74–80.

DOI: 10.37544/1436-4980-2010-1-2-74

Google Scholar

[27] Tönshoff, H. K.; Hillmann-Apmann, H.; Asche, J.: Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. In: Diamond and Related Materials, Vol 11 (2002), p.736–741.

DOI: 10.1016/s0925-9635(01)00561-1

Google Scholar

[28] Warnecke, G., Zitt, U.: Kinematic Simulation for Analyzing and Predicting High-Performance Grinding Processes, Annals of the CIRP Vol. 47/1 (1998), pp.265-270.

DOI: 10.1016/s0007-8506(07)62831-5

Google Scholar

[29] Zitt, U. -R.: Modellierung und Simulation von Hochleistungsschleifprozessen, Dissertation TU Kaiserslautern, (1999).

Google Scholar

[30] Braun, O.: Konzept zur Gestaltung und Anwendung definiert gesetzter CBN-Schleifscheiben. Dissertation TU Kaiserslautern, (2008).

Google Scholar