Investigations on Ni-Mo Alloy Microstructure with Mo Atom Content

Article Preview

Abstract:

Using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) to describe the relationship between Mo content and the amorphous content in deposites from the effects of the molybdate concentration on microstructure, phase content and morphology of the deposits. It is found when the Mo content is low to 18at.%, the deposits are composed of nanocrystalline main phases and the grain size is below 10nm with tiny particle at the basement surface. When Mo in 18~33at.%, the deposits are composed of amorphous phase up to more than 60wt.% proportion, and the grain size of the nanocrystalline existing in the deposits is stability of 3~10nm with tiny particle and well-distribution of the basement surface. When Mo content is exceeding 33at.%, the deposits performance is of the crystalline properties with more crystal defects in the coating.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 230-232)

Pages:

1093-1098

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Luciana S. Sanches, Sergio H. Domingues, Claudia E.B. Marino, Lucia H. Mascaro. J. Electrochemistry Communications, 6(6), 543(2004).

Google Scholar

[2] Fotis Paloukis, Spyros Zafeiratos, Vasilis Drakopoulos, Stylianos G. Neophytides., Electrochimica Acta, 53(27), 8015(2008).

DOI: 10.1016/j.electacta.2008.05.045

Google Scholar

[3] Shunsuke Yagi, Akira Kawakami, Kuniaki Murase, Yasuhiro Awakura. Electrochimica Acta, 52(19), 6041(2007).

Google Scholar

[4] Alexis Damian, Sasha Omanovic. J. Power Sources, 158(1), 464(2006).

Google Scholar

[5] Stasov A.A., Pasechnik S. Ya., Izv. Vyssh Ucheb Zaved., et al. Ser. Chem. And Chem. Technol, 16, 600(1973).

Google Scholar

[6] Jović V.D., Jović B.M. J. Electroanal. Chem. C, 541, 1(2003).

Google Scholar

[7] Hu C C, Weng C Y. J. Appl. Electrochem., 30, 499(2000).

Google Scholar

[8] Kubisztal J., Budniok A. Hydrogen Energy, 33(17), 4488(2008).

Google Scholar

[9] Jiao Jiao, Bu Shao-Yue, Wang Gui-Chang, Bu Xian-He. J. Molecular Structure: THEOCHEM, 862(1-3), 80(2008).

Google Scholar

[10] Krstajić N.V., Jović V.D., Gajić-Krstajić Lj., Jović B.M., Antozzi A.L., Martelli G.N. Hydrogen Energy, 33(14), 3676(2008).

DOI: 10.1016/j.ijhydene.2015.06.127

Google Scholar

[11] Huang Ling, Yang Fang-zu, Sun Shi-gang, et al. Chinese Journal of Chemistry, 21, 382(2003).

Google Scholar

[12] Koteski V., Mahnke H. -E., Belošević-Čavor J., Cekić B., Schumacher G. Acta Materialia, 56(17), 4601(2008).

DOI: 10.1016/j.actamat.2008.05.015

Google Scholar

[13] Karolus M., Lagiewka E. J. Alloys and Compounds, 367, 235(2004).

Google Scholar

[14] Adrian Canzian, Hugo Mosca, Guillermo Bozzolo. Applied Surface Science, 254(1), 392(2007).

Google Scholar

[15] Kulkarni U.D. Acta Materialia, 52(9), 2721(2004).

Google Scholar

[16] Banerjee R., Brice C. A., Banerjee S., Fraser H. L. Materials Science and Engineering A, 347(1-2), 1(2003).

Google Scholar

[17] Mikołaj Donten, Henrikas Cesiulis, Zbigniew Stojek. Electrochimica Acta, 50(6), 1405(2005).

Google Scholar