[1]
Woo J.H., Polymer nanocomposites: processing, characterization and applications. McGraw- Hill, New York, (2006).
Google Scholar
[2]
Lozano K., Yang S.Y., Zeng Q., J. Appl. Poly. Sci., 93 (2004)1500
Google Scholar
[3]
Huang C.K., European Polymer Journal, 42(9), (2006) 2174
Google Scholar
[4]
Knite M., Klemenok I., Shakale G., Valdis Teteris, Janis Zicans, J. Alloys Compd.434-435(2007)850-853
DOI: 10.1016/j.jallcom.2006.08.098
Google Scholar
[5]
Zhang P., Zhang H. P., Li Z. H., Wu Y. P., T. van Ree, Polymers for Advanced Technologies, 20(6), (2009) 571
Google Scholar
[6]
Jou W. S., Cheng H. Z., Hsu C. F., J. Alloys Compd.434-435(2007)641-645
Google Scholar
[7]
Boehm J., Beck M., Hausselt J., 2D- and 3D-transmission electron microscopy and optical microscopy in powder-based micro components, Microsyst Technol 13 (2007):117-125
DOI: 10.1007/s00542-006-0255-3
Google Scholar
[8]
Dawan F., Jin Y. Y., Goettert J., Ibekwe S. High functionality of a polymer nanocomposite material for MEMS applications, Microsyst Technol 14 (2008):1451-1459
DOI: 10.1007/s00542-008-0577-4
Google Scholar
[9]
Dalton AB, Collins S, Munˇoz E, Razal JM, Ebron VH, Ferraris JP, et al. Super-tough carbon-nanotube fibres. Nature. 423(12) (2003):703.
DOI: 10.1038/423703a
Google Scholar
[10]
Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. NanoLett 4(3) (2004):459–64.
DOI: 10.1021/nl035135s
Google Scholar
[11]
Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phy Lett 73(9) (1998):1197–9.
DOI: 10.1063/1.122125
Google Scholar
[12]
Li Z M, Li S N, Yang M B, Huang R. A novel approach to preparing carbon nanotube reinforced thermoplastic polymer composites. Carbon, 43(2005): 2397-2429
DOI: 10.1016/j.carbon.2005.04.037
Google Scholar
[13]
Sui G, Zhong W H, Fuqua M A, Ulven C A. Crystalline structure and properties of carbon nanofiber composites prepared by melt extrusion. Macromol. Chem.. Phys. 208, (2007) 1928-1936
DOI: 10.1002/macp.200700170
Google Scholar
[14]
Bao S P, Tjong S C. Temperature and strain rate dependences of yield stress of polypropylene composite reinforced with carbon nanofibers, Polym. Compos., 30 (2009):1739-1760
DOI: 10.1002/pc.20739
Google Scholar
[15]
Jiang H X, Ni Q Q, Natsuki T., Tensile properties and reinforcemetn mechanisms of natural rubber/vapor-grown carbon nanofiber composite, Polym. Compos. 31 (2010): 1099-1104
DOI: 10.1002/pc.20897
Google Scholar
[16]
Li J, Ma P C, Chow W S, To C K, Tang B Z, and Kim J K. Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Advanced Functional Materials, 17 (2007):3207-3215
DOI: 10.1002/adfm.200700065
Google Scholar
[17]
Fellahi S., Meddad A, Fisa B., and Favis B.D., Advances in Polymer Technology, 14(3), (1995)165
Google Scholar
[18]
Fisa B., Rahmani M., Polym. Eng. Sci., 31(18), (1991)1330
Google Scholar
[19]
Xie, L. and Ziegmann, G.: Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites. Journal of Alloys and Compounds 509, (2011)226-233.
DOI: 10.1016/j.jallcom.2010.09.051
Google Scholar
[20]
Xie L., Ziegmann G., Microsyst. Technol., 15(7), (2009)1031
Google Scholar