QSPR/QSAR Study of Mercaptans by Quantum Topological Method

Article Preview

Abstract:

A new molecular quantum topological index QT was constructed by molecular topological methods and quantum mechanics (QM), which together with Gibbs free energy(G), Constant volume mole hot melting(CV) that were calculated by density functional theory (DFT) at the B3LYP/6-31G(d) level of theory for mercaptans. Index QT can not only efficiently distinguish molecular structures of mercaptans, but also possess good applications of QSPR/QSAR (quantitative structure-property/activity relationships). And most of the correlation coefficients of the models were over 0.99. The LOO CV (leave-one-out cross-validation) method was used to testify the stability and predictive ability of the models. The validation results verified the good stability and predictive ability of the models employing the cross-validation parameters: RCV, SCV and FCV, which demonstrated the wide potential of the index QT for applications to QSPR/ QSAR.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2536-2540

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Feng Yang , Zhendong Wang and Yunping Huang, J. Comput. Chem., 25(2004)881.

Google Scholar

[2] A. G. Mercader, P. R. Duchowicz, F. M. Fernández, et al, Bioorg Med Chem., 16 (2008) 7470.

Google Scholar

[3] P. R. Duchowicz, M. G. Vitale, E. A. Castro, J. C. Autino, G. P. Romanelli, and D. O. Bennardi, Eur J Med Chem., 43 (2008)1593.

Google Scholar

[4] M. A. Turabekova, B. F. Rasulev, M. G. Levkovich , N. D. Abdullaev, and J. Leszczynski, Comput Biol Chem. , 32(2008)88.

Google Scholar

[5] T. I. Netzeva, T. W. Schultz, Chemosphere, 61(2005)1632.

Google Scholar

[6] H. Wiener, J Am Chem Soc., 69(1947)17.

Google Scholar

[7] Lu Xu, Xueguang Shao, Methods of Chemometrics, Science Press, 2004.

Google Scholar

[8] H. Hosoya, Bull Chem Soc Jpn., 44(1971)2332.

Google Scholar

[9] A. T. Balaban, Chem Phys Lett. , 89(1982)399.

Google Scholar

[10] M. Randic, Chem Phys Lett., 211(1993)478.

Google Scholar

[11] G. Cash, S. Klavžar, and M. Petkovšek, J. Chem. Inf. Comput. Sci,, 42(2002)571.

Google Scholar

[12] M. H. Fatemi, M. R. Hadjmohammadi, K. Kamel, and P. Biparva, Bull Chem Soc Jpn., 80(2007)303.

Google Scholar

[13] Yiyu Cheng, Hua Yuan, J Mol Graph Model., 24(2006)219.

Google Scholar

[14] J. Polanski, A. Bak, R. Gieleciak, and T. Magdziarz, J. Chem. Inf. Model., 46(2006)2310.

DOI: 10.1021/ci050314b

Google Scholar

[15] J. Wang, G. Krudy, XQ Xie, C. Wu, and G. Holland, J. Chem. Inf. Model., 46(2006)2674.

Google Scholar

[16] H. Dureja, A. K. Madan, J Mol Graph Model. 25(2006)373.

Google Scholar

[17] L. P. Zhou, L. L. Sun, Y. Yu, W. Lu, and Z. L. Li, J Mol Graph Model., 25(2006)333.

Google Scholar

[18] S. S. Godavarthy, R. L. Robinson, and K. A. M. Gasem, Ind. Eng. Chem. Res. , 45(2006)5117.

Google Scholar

[19] A. R. Katritzky, S. H. Slavov, D.A. Dobchev, and M. Karelson, Comput. Chem. Eng. , 31(2007)1123.

Google Scholar

[20] Yingwu Lin, Changming Nie, and Lifu Liao, Chin. Chem. Lett. , 19(2008)119. ( In Chinese)

Google Scholar

[21] Huoyu Rao, Jianhua Ding, Zhanggao Le, Xiaping Zhu, and Mingbiao Luo, Chin. J.Chem. Phys., 17(2004)426. ( In Chinese)

Google Scholar

[22] M. A. Turabekova, B. F. Rasulev, M. G. Levkovich, N. D. Abdullaev, and J. Leszczynski, Comput. Biol. Chem., 32(2008)88.

Google Scholar

[23] Yingwu lin, Zhonghua Wang, Changming Nie, and Fengyun Ni, Acta Physico-Chimica Sinica, 23(2007) 1594.

Google Scholar

[24] Changming Nie, Saihong Jiang, Da Lin, Zhonghai Li, Yaxin Wu, and Songnian Wen, Chinese Journal of Magnetic Resonance, 25(2008)379.

Google Scholar

[25] Changming Nie, Yaxin Wu, Rongyan Wu, Saihong Jiang, and Congyi Zhou, Journal of Theoretical and Computational Chemistry, 8(2009)19.

Google Scholar

[26] Congyi Zhou, Changming Nie, Shan Li, and Zhonghai Li, J. Comput. Chem., 28(2007)2413.

Google Scholar

[27] Yaxin Wu, Changming Nie, Rongyan Wu, Saihong Jiang, and Songnian Wen, J. Chil. Chem. Soc., 53(2008)1399.

Google Scholar

[28] Congyi Zhou, Changming Nie, Chromatographia, 66(2007)545.

Google Scholar

[29] Changming Nie, J. Wuhan Univ. (Nat. Sci Ed.), 46(2000)176. ( In Chinese)

Google Scholar

[30] Changming Nie, Zhonghai Li, and Songnian Wen, Chinese Journal of Organic Chemistry, 22(2002)46. ( In Chinese)

Google Scholar

[31] M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

Google Scholar

[32] M. T. Benson, M. L. Moser, D. R. Peterman, A. Dinescu, J. Mol. Struct:(THEOCHEM), 867(2008)71.

Google Scholar

[33] C. L. Yaws, Chemical Properties Handbook, McGraw-Hill Book Co, 1999.

Google Scholar

[34] H. C. Li (1999) Handbook for Analytical Chemistry, gas chromatography analysis. Chemistry Industry Press, Beijing

Google Scholar

[35] I. Raska, Jr., A. Toropov, Eur. J. Med. Chem., 41(2006)1271.

Google Scholar

[36] M. F. Yeh, C. S. Hong, J. Chem. Eng. Data, 47(2002)209.

Google Scholar

[37] Xihua DU, J Shandong Univ., 39(2004)90. ( In Chinese)

Google Scholar

[38] M. M. C. Ferreira, Chemosphere, 44(2001)125.

Google Scholar

[39] F. Alves de Lima Ribeiro, M. M. C. Ferreira, J. Mol. Struct:(THEOCHEM), 663(2003)109.

Google Scholar