Cloning of Laccase Gene from Coriolus Versicolor and Optimization of Culture Conditions for Lcc1 Expression in Pichia Pastoris

Article Preview

Abstract:

A laccase cDNA lcc1 (GenBank accession number HM137002), without native signal peptide, was cloned by RT-PCR from total RNA of Coriolus versicolor. Recombination expression vector pPICZαA-lcc1 was constructed and transformed into Pichia pastoris KM71H after lineared. Recombination laccase was expressed at a higher level. Single factors of fermentation conditions of Pichia pastoris KM71H for laccase production were optimized. The results showed optimal culture conditions were as follows: medium initial pH 7.5, Cu2+ concentration 0.5mmol/L, methanol additive amount 1.0% and shaker rotate speed 210r/min. Furthermore, induction at low temperature was more suitable for lcc1 secretion. And addition of appropriate amount peptone and tyrosine in culture medium could enhanced lcc1 yields and reduce its degradation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1039-1044

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.F. Thurston: Microbiology Vol. 140 (1994), p.19

Google Scholar

[2] G. Diamantidis, A. Effosse, P. Potier, and R. Bally: Soil Biol Biochem Vol. 32 (2001), p.919

Google Scholar

[3] K.J. Kramer, M.R. Kanost, T.L. Hopkins, H. Jing, Y.C. Zhu, R. Xu, et al: Tetrahedron Vol. 57(2001), p.385

Google Scholar

[4] D. Wesenberg, I. Kyriakides and S.N. Agathos: Biotechnol Adv Vol. 22 (2003), p.161

Google Scholar

[5] H.P. Call, I. Mücke: J Biotechnol Vol. 53 (1997), p.163

Google Scholar

[6] M. Marzoorati, B. Danieli, D. Haltrich and S. Riva: Green Chem Vol. 7 (2005), p.310

Google Scholar

[7] R.C. Minussi, G.M. Pastore and N. Duran: Trends Food Sci Technol Vol. 13(2002), p.205

Google Scholar

[8] R.F. Dekker, A.M. Barbosa: Enzyme Microb Technol Vol. 28(2001), p.81

Google Scholar

[9] M.C. Colao, S. Lupino, A.M. Garzillo, V. Buonocore and M. Ruzzi: Mircobial Cell Factories Vol. 5 (2006), p.31

DOI: 10.1186/1475-2859-5-31

Google Scholar

[10] W. Liu, Y. Chao, S. Liu, H. Bao and S. Qian: Appl Microbiol Biotechnol Vol. 63(2003), p.174

Google Scholar

[11] D.M. Soden, J.O. Callaghan and AD.W. Dobson: Microbiology Vol. 148(2002), p.4003

Google Scholar

[12] K. Koschorreck, S.M. Richter, A. Swierczek, U. Beifuss, R.D. Schmid and V.B. Urlacher: Arch Biochem Biophys Vol. 474 (2008), p.213

Google Scholar

[13] E.D. Gromroff, U. Treiser, C.F. Beck: Mol Cell Biol Vol. 9 (1989), p.3911

Google Scholar

[14] R.E. Childs, W.G. Bardsley: Biochem J Vol. 145 (1975), p.93

Google Scholar

[15] U.K. Laemmli: Nature Vol. 227 (1970), p.680

Google Scholar

[16] G. Palmieri, G. Cennamo, V. Faraco, A. Amoresano, G. Sannia, P. Giardina: Enzyme Microb Technol Vol. 33(2003), p.220

DOI: 10.1016/s0141-0229(03)00117-0

Google Scholar

[17] A. Miele, P. Giardina, G. Sannia, V. Faraco: Journal of Applied Microbiology Vol. 108 (2009), pp.998-1006

Google Scholar

[18] M. Guo, F.P. Lu, L.X. Du, J. Pu, D.Q. Bai: Appl Microbiol Biotechnol Vol. 71(2006), p.848

Google Scholar

[19] C. Madzak, L. Otterbein, M. Chamkha, S. Moukha, M.Asther, C. Gaillardin, et al: Yeast research Vol. 5(2005), p.635

DOI: 10.1016/j.femsyr.2004.10.009

Google Scholar