Synthesis of Nitrogen-Doped ZnO Nanocrystallites and its Novel Catalytic Activity on Ammonium Perchlorate

Article Preview

Abstract:

Nitrogen-doped zinc oxide (N-doped ZnO) nanocrystallites were synthesized via improved one-step combustion technique by using citric acid as additive. Scan electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to determine the grain size, shape, degree of nitrogen incorporation and nature of the resultant oxynitride chemical bonding. The catalytic performance of N-doped ZnO on the thermal decomposition of ammonium perchlorate (AP) was investigated by DSC-TG technique. The results show that the as-synthesized N-doped ZnO has uniform crystallite size about 20-30nm in diameter and 1.25%wt nitrogen incorporation, which forms into NO bonding region in ZnO crystal lattice. The nitrogen doping is accountable for the significant increase in catalytic activity on the thermal decomposition of AP versus the commercial nanometer ZnO and the thermal decomposition peak shifts 133°C downward when the content of N-doped ZnO in AP is 3%wt.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1665-1669

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tanjew Nutz, Markus Haase, J. Phys. Chem. 2000, B104: 8430-8436

Google Scholar

[2] Raj pure K Y,Kusumade M N, Mater. Chem. and Phys. 2000, 64: 184-190

Google Scholar

[3] Clements Burda,Y. B. Lou, X.B. Chen, Anna C. S.Samia,John Stout, James L. Gole, Nano. Lett. 2003, 3: 1049-1051

DOI: 10.1021/nl034332o

Google Scholar

[4] R.H. Wang, J.H. Xin, Y.Yang, H. F. Liu, L. M. Xu, J. H. Hu, Appl. Surf. Sci. 2004, 227 : 312-317

Google Scholar

[5] H.S. Bhatti, Atul Gupta, N.K. Verma,et al. , J Phys.Chem. Solids 2006, 67: 868-870

Google Scholar

[6] J.Liu, Y.Zhang, J.J.Qi, Acta Phys. Chim. Sin. 2006, 22: 38-44

Google Scholar

[7] D.P. Norton, M. Ivill, Y. Li, Y.W. Kwon, J.M. Erie, H.S. Kim, et al., Thin Solid Films 2006, 496: 160-168

DOI: 10.1016/j.tsf.2005.08.246

Google Scholar

[8] Z.Yan, Z. T. Song, W. L. Liu, Q. Wang, F. M. Zhang, S. L. Feng, Thin Solid Films, 2005, 492: 203-206

Google Scholar

[9] F.G. Chen, Z.Z. Ye, W.Z. Xu, B.H. Zhao, L.P. Zhu, J. G. Lu , J. Crystal Growth 2005, 281: 458-464

Google Scholar

[10] O Senthil Kumara, Eisuke Watanabeb, Ryuichi Nakaib,J. Crystal Growth 2007, 298: 491-497

Google Scholar

[11] Y. W.Cai, W. Wu, J.F. Chen, J. Beijing Univer. Chem. Tech. 2004, 31: 28-41(in chinese)

Google Scholar

[12] X.E.Li, X.J.Qu, S. Hai ,et al., Chem. Engi. 2002, 30: 41-44 (in chinese)

Google Scholar

[13] Di Li, Hajime Haneda, J. Photochem. Photobio. A: Chem. 2003, 155: 171-178

Google Scholar

[14] J.F.Lu, Q.W. Zhang, J.Wang, Fumio Saito, Masashi Uchida, Powder Tech. 2006, 162: 33-37

Google Scholar

[15] Neenu Varghese L.S. Panchakarla, M.Hanapi,A. Govindaraj, C,N,R.Rao, Mater. Res. Bull. 2007, 42: 2117-2124

Google Scholar

[16] M. Zheng, J.Q Wu. CN200710122731, (2007)

Google Scholar

[17] J. Q.Wu, M. Zheng, J. Inorg. Mater. 23(2008)1278-1282

Google Scholar

[18] G. R.Duan X.J. Yang,J.Chen G.H. Huang, Lude Lu, X. Wang, Powder Tech. 2007, 172: 27-29

Google Scholar

[19] T.Liu L.S. Wang,P.Yang,B. Y. Hu, Mater. Letters 2008, 62: 4056-4058

Google Scholar

[20] Y.P. Wang J.W. Zhu, X.J. Yang,Lude Lu, X.Wang, Thermochimica Acta 2005, 437: 106-109

Google Scholar

[21] X.J. Zhang, W.Jiang, D.Song. Mater. Letters 2008, 62: 2343-2346

Google Scholar

[22] Said A A, Qasmi R Al. Thermochim. Acta. 275(1996)83-91

Google Scholar