Investigation on Electronic Signals for Detection of Target DNA Molecule Based on Extended Gate FET Sensing Chip

Abstract:

Article Preview

An electronic detection method for DNA molecules based on an extended gate field effect transistor (EGFET) sensing chip has been presented in this paper, which consists of one gold plate electrode for molecule recognition and FET part for signal transduction. The DNA probe was prepared by first immobilization of a thiolated single-stranded oligonucleotide (T1) and then an alkanethiol such as 6-hydroxy-1-hexanethiol (6-HHT) on the gold plate. A fast cyclic voltammetry (FCV) was applied to quantification of DNA molecules by using a cathodic peak around -1.3 V at a electrode reaction, corresponding to reductive desorption in strong alkali solution. By using a 70.7 mV DC voltage onto a Ag/AgCl reference electrode, the electronic signals of EGFET were applied to detection of DNA molecules and its hybridization, and the corresponding hybridization efficient was estimated to be about 37.5%. About 1 ~ 4 DNA molecules per 100 nm2 on the Au substrate of EGFET could be counted, showing a promising sensing technique for bio-molecule.

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao

Pages:

1923-1926

DOI:

10.4028/www.scientific.net/AMR.236-238.1923

Citation:

Z. Cao et al., "Investigation on Electronic Signals for Detection of Target DNA Molecule Based on Extended Gate FET Sensing Chip", Advanced Materials Research, Vols. 236-238, pp. 1923-1926, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.