Applications of Computational Fluid Dynamics(CFD) in the Food Industry

Abstract:

Article Preview

The application of computational fluid dynamics(CFD) in the food industry such as drying, thermal sterilization, mixing, refrigeration and humidification of cold storage was reviewed. The results from previous studies have shown that CFD was a powerful numerical tool that is applied to model fluid flow situations and aid in the optimal design of engineering equipment and food process. With the development of computer technology, it is conceivable that CFD will continue to provide more explanations for physical modeling of fluid flow and process system design for the food industry.

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao

Pages:

2273-2278

Citation:

H. W. Ren and Y. Zhang, "Applications of Computational Fluid Dynamics(CFD) in the Food Industry", Advanced Materials Research, Vols. 236-238, pp. 2273-2278, 2011

Online since:

May 2011

Authors:

Export:

Price:

$41.00

[1] Wang L, Sun D W. Recent developments in numerical modelling of heating and cooling processes in the food industry a review[J]. Trends in Food Science and Technology, 2003, (14): 408-423.

DOI: https://doi.org/10.1016/s0924-2244(03)00151-1

[2] Huang L X, Kumar K, Mujumdar A S. A parametric study of the gas flow patterns and drying performance of co-current spray dryer: results of a computational fluid dynamics study[J]. Drying Technology. 2003(21): 957-978.

DOI: https://doi.org/10.1081/drt-120021850

[3] Siriwattanayotin, S, Yoovidhya, T, Meepadung, T, et al. Simulation of sterilization of canned liquid food using sucrose degradation as an indicator[J]. Journal of Food Engineering. 2006, (73): 307-312.

DOI: https://doi.org/10.1016/j.jfoodeng.2004.08.008

[4] Varma M N, Kannan A. CFD studies on natural convective heating of canned food in conical and cylindrical containers. Journal of Food Engineering[J]. 2006(77): 1024-1036.

DOI: https://doi.org/10.1016/j.jfoodeng.2005.07.035

[5] Song H S, Han S P. A general correlation for pressure drop in a Kenics static mixer. Chemical Engineering Science[J]. 2005, ( 60): 5696-5704.

DOI: https://doi.org/10.1016/j.ces.2005.04.084

[6] Ghani A G., Farid M M, Chen X D. Thermal sterilization of canned food in a 3-D pouch computational fluid dynamics[J]. Journal of Food Engineering, 2001, 48(2): 147-156.

DOI: https://doi.org/10.1016/s0260-8774(00)00150-3

[7] Mathioulakis E, Karathanos V T, Belessiotis V G. Simulation of air movement in a dryer by computational fluid dynamics: application for the drying of fruits[J]. Journal of Food Engineering. 1998(36): 183-200.

DOI: https://doi.org/10.1016/s0260-8774(98)00026-0

[8] Mirade PS, Daudin JD. A numerical study of the airflow patterns in a sausage dryer[J]. Drying Technology, 2000, 18 (12): 81-97.

DOI: https://doi.org/10.1080/07373930008917694

[9] Margaris D P, Ghiaus A G. Dried product quality improvement by air flow manipulation in tray dryers[J]. Journal of Food Engineering. 2006, (75): 542-550.

DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.037

[10] Straatsma J, Houwelingen VG., Steenbergen, AE, et al. Spray drying of food products[J]. Simulation model. Journal of Food Engineering. 1999, 42(2): 67-72.

DOI: https://doi.org/10.1016/s0260-8774(99)00107-7

[11] Huang L, Kumar K, Mujumdar AS. Computational fluid dynamic simulation of droplet drying in a spray dryer[C]/. Proceedings of the 14th International Drying Symposium, Brazil, 2004: 326–332.

[12] Huang L, Kumar K, Passos ML, et al. A three-dimensional simulation of a spray dryer fitted with a rotary atomizer[J]. Drying Technology, 2005, 23 (1): 1–15.

DOI: https://doi.org/10.1080/07373930500210176

[13] Langrish T A G. Multi-scale mathematical modelling of spray dryers[J]. Journal of Food Engineering. 2009, (93): 218-228.

DOI: https://doi.org/10.1016/j.jfoodeng.2009.01.019

[14] Ekechukwu OV, Norton B. Review of solar-energy drying systems II: an overview of solar drying technology[J]. Energy Conversion and Management. 1999, 40(6): 615-655.

DOI: https://doi.org/10.1016/s0196-8904(98)00093-4

[15] Kavak Akpinar E. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses[J]. Energy Conversion and Management. 2010, 51(06): 2407-2418.

DOI: https://doi.org/10.1016/j.enconman.2010.05.005

[16] Abdul Ghani A G., Farid M M, Chen X D, et al. Numerical simulation of natural convection heating of canned food by computational fluid dynamics[J]. Journal of Food Engineering, 1999, 41(1): 55-64.

DOI: https://doi.org/10.1016/s0260-8774(99)00073-4

[17] Abdul Ghani A G., Farid M M, Zarrouk S J. The effect of can rotation on sterilization of liquid food using computational fluid dynamics[J]. Journal of Food Engineering, 2003(57): 9-16.

DOI: https://doi.org/10.1016/s0260-8774(02)00215-7

[18] Sahu AK, Kumar P, Patwardhan AW, et al. CFD modelling and mixing in stirred tanks[J]. Chemical Engineering Science. 1999, 54(13): 2285-2293.

DOI: https://doi.org/10.1016/s0009-2509(98)00334-0

[19] Rousseaux JM, Vial C, Muhr H, et al. CFD simulation of precipitation in the sliding-surface mixing device[J]. Chemical Engineering Science. 2001, 56(4): 1677-1685.

DOI: https://doi.org/10.1016/s0009-2509(00)00396-1

[20] Hu Z, Sun Da-Wen. CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process[J]. Journal of Food Engineering. 2000, 46 (3): 189-197.

DOI: https://doi.org/10.1016/s0260-8774(00)00082-0

[21] Hu Z, Sun Da-Wen. Effect of fluctuation in inlet airflow temperature on CFD simulation of air-blast chilling process[J]. Journal of Food Engineering. 2001, 48 (4): 311-316.

DOI: https://doi.org/10.1016/s0260-8774(00)00172-2

[22] Hu Z, Sun Da-Wen. Predicting local surface heat transfer coefficients by different turbulent k– models to stimulate heat and moisture transfer during air-blast chilling[J]. International Journal of Refrigeration. 2001, 24 (7): 702-717.

DOI: https://doi.org/10.1016/s0140-7007(00)00081-5

[23] Moureh J, Derens E. Numerical modelling of the temperature increase in frozen food packaged in pallets in the distribution chain[J]. International Journal of Refrigeration. 2000, 23 (7): 540-552.

DOI: https://doi.org/10.1016/s0140-7007(99)00081-x

[24] Cortella G., Manzan M, Comini G. CFD simulation of refrigerated display cabinets. International Journal of Refrigeration[J]. 2001, 24 (3): 250-260.

DOI: https://doi.org/10.1016/s0140-7007(00)00015-3

[25] Delele MA, Schenk A, Tijskens E, et al. Optimization of the humidification of cold stores by pressurized water atomizers based on a multi-scale CFD model[J]. Journal of Food Engineering. 2009(91): 228-239.

DOI: https://doi.org/10.1016/j.jfoodeng.2008.08.027

[26] Delele MA, Schenk A, Ramon H, et al. Evaluation of a chicory root cold store humidification system using computational fluid dynamics[J]. Journal of Food Engineering. 2009, 94(03): 110-121.

DOI: https://doi.org/10.1016/j.jfoodeng.2009.03.004

[27] Denys S, Dewettinck K, Pieters J G. CFD analysis for process impact assessment during thermal pasteurisation of intact eggs[J]. Journal of Food Protection, 2005, (68): 366-374.

DOI: https://doi.org/10.4315/0362-028x-68.2.366

[28] Denys S, Pieters J G., Dewettinck K. Combined CFD and experimental approach for determination of the surface heat transfer coefficient during thermal processing of eggs. Journal of Food Science. 2003, (68): 943-951.

DOI: https://doi.org/10.1111/j.1365-2621.2003.tb08269.x

[29] Denys S, Pieters J G., Dewettinck K. Computational fluid dynamics analysis of combined conductive and convective heat transfer in model eggs[J]. Journal of Food Engineering, 2004( 63): 281-290.

DOI: https://doi.org/10.1016/j.jfoodeng.2003.06.002

[30] Al-Hakim, K. An Investigation of Spray-Freezing and Spray-Freeze-Drying[D]. UK. Loughborough University, (2004).

[31] Anandharamakrishnan C, Gimbun J, Stapley A G. F, et al. Application of Computational Fluid Dynamics (CFD) Simulations to Spray-Freezing Operations[J]. Drying Technology, 2010, 28(1): 94- 102.

DOI: https://doi.org/10.1080/07373930903430843