Antioxidant Pathways and Chemical Mechanism of Curcumin

Article Preview

Abstract:

Curcumin, a hydrophobic polyphenol derived from rhizome (turmeric) of the herb Curcuma longa, have been shown to exhibit antioxidant, anticarcinogenic anti-inflammatory, antimicrobial and nephroprotective activities, et al. Among these, its potent antioxidant activity is worthwhile of special attention, because oxidative stress is involved in the pathogenesis of cancer, neurodegenerative diseases, et al. This review focuses on the ways that curcumin exerts its antioxidant activity, including direct chemical reaction with free radicals, chelation with metals ions which results in oxidative stress, regulation of antioxidant-related enzyme activity and gene expression. Meanwhile the disputed chemical antioxidant mechanism is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

2311-2314

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Anand, S. G. Thomas and A. B. Kunnumakkara: Biochemical Pharmacology: Vol. 76 (2008), p.1590

Google Scholar

[2] A. S. Strimpakos and R. A. Sharma: Antioxid Redox Sign: Vol. 10 (2008), p.511

Google Scholar

[3] A. T. Dinkova-Kostova and P. Talalay: Molecular Nutrition & Food Research: Vol. 52 (2008), p. S128

Google Scholar

[4] K. C. Das and C. K. Das: Biochemical and Biophysical Research Communications: Vol. 295 (2002), p.62

Google Scholar

[5] T. Ak and I. Gulcin: Chemico-Biological Interactions: Vol. 174 (2008), p.27

Google Scholar

[6] M. K. Unnikrishnan and M. N. A. Rao: Molecular and Cellular Biochemistry: Vol. 146 (1995), p.35

Google Scholar

[7] M. Onoda and H. Inano: Nitric Oxide: Vol. 4 (2000), p.505

Google Scholar

[8] B. D. Johnston and E. G. Demaster: Nitric Oxide: Vol. 8 (2003), p.231

Google Scholar

[9] M. Borsari, E. Ferrari and R. Grandi: Inorganica Chimica Acta: Vol. 328 (2002), p.61

Google Scholar

[10] M. Ishihara and H. Sakagami: In Vivo: Vol. 19 (2005), p.119

Google Scholar

[11] Y. Jiao, J. Wilkinson Iv and E. Christine Pietsch: Free Radical Biology And Medicine: Vol. 40 (2006), p.1152

Google Scholar

[12] L. Baum and A. Ng: J Alzheimers Dis: Vol. 6 (2004), p.367

Google Scholar

[13] S. Daniel, J. L. Limson and A. Dairam: Journal Of Inorganic Biochemistry: Vol. 98 (2004), p.266

Google Scholar

[14] R. T. Williams: Fed Proc: Vol. 26 (1967), p.1029

Google Scholar

[15] A. T. Dinkova-Kostova, M. A. Massiah and R. E. Bozak: P Natl Acad Sci USA: Vol. 98 (2001), p.3404

Google Scholar

[16] R. Motterlini, R. Foresti and R. Bassi: Free Radical Biology And Medicine: Vol. 28 (2000), p.1303

Google Scholar

[17] N. Hill-Kapturczak, V. Thamilselvan and F. Y. Liu: Am J Physiol-Renal: Vol. 281 (2001), p. F851

Google Scholar

[18] P. Manikandan, M. Sumitra and S. Aishwarya: The International Journal of Biochemistry & Cell Biology: Vol. 36 (2004), p. (1967)

Google Scholar

[19] S. V. Jovanovic, S. Steenken and C. W. Boone: Journal Of The American Chemical Society: Vol. 121 (1999), p.9677

Google Scholar

[20] L. R. C. Barclay, M. R. Vinqvist and K. Mukai: Organic Letters: Vol. 2 (2000), p.2841

Google Scholar

[21] J. S. Wright: J Mol Struc-Theochem: Vol. 591 (2002), p.207

Google Scholar

[22] K. I. Priyadarsini, D. K. Maity and G. H. Naik: Free Radical Biology And Medicine: Vol. 35 (2003), p.475

Google Scholar

[23] Y. M. Sun, H. Y. Zhang and D. Z. Chen: Organic Letters: Vol. 4 (2002), p.2909

Google Scholar

[24] G. Litwinienko and K. U. Ingold: The Journal of Organic Chemistry: Vol. 69 (2004), p.5888

Google Scholar

[25] K. Ohara, W. Mizukami and A. Tokunaga: B Chem Soc Jpn: Vol. 78 (2005), p.615

Google Scholar

[26] A. Galano, R. lvarez-Diduk and M. T. Ramírez-Silva: Chemical Physics: Vol. 363 (2009), p.13

Google Scholar

[27] R. A. Sharma, A. J. Gescher and W. P. Steward: European journal of cancer: Vol. 41 (2005), p. (1955)

Google Scholar