Response Surface Optimization of Concentrated Sulfuric Acidic Hydrolysis of Poplar Sawdust

Article Preview

Abstract:

The primary goal of this study was optimized condition for hydrolyzed of papermaking waste (poplar sawdust) as a potential bio-ethanol source by sulfuric acid pretreatment. Based on 23 factorial design, fifteen operations were performed by varying on T, t and c (T: hydrolysis temperature, t: hydrolysis time and c: sulfuric acid concentration). The components of the hydrolysate and solid fractions were analyzed by GC, X-RD and SEM, respectively. The results showed that optimal condition was T 44.8°C, t 120min and c 60%, and reducing sugar yield of 43.3% can be obtained. Through GC detection, glucose content of 26.10 g/L and xylose content of 9.00 g/L is available in hydrolyzate for fermentation. The residue crystallinity declined 74.34% from XRD analysis, the fiber structure was destroyed completely by acid hydrolysis from SEM photograph.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

259-263

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Thamsiriroj, T. and Murphy, J. D. Renew Energ 36, 50-63, (2011)

Google Scholar

[2] Seabra, J. E. A. and Macedo, I. C. Energy Policy 39, 421-428 (2011).

Google Scholar

[3] Sahin, Y. Ener Educ Sci Tech-A 26, 129-142 (2011)

Google Scholar

[4] Demirbas, A. Applied Energy 88, 17-28, (2011).

Google Scholar

[5] Zhu, J. Y., Pan, X. J. and Zalesny, R. S. Appl Microbiol Biot 87, 847-857, (2010).

Google Scholar

[6] Dario Zanichelli, Francesco Carloni, Ermal Hasanaj, Nausica D'Andrea, Alessandro Filippini and Leonardo Setti. Environ Sci Pollut R 14, 5-6, (2007).

Google Scholar

[7] Alexander Hammerschmidt, Nikolaos Boukis, Elena Hauer, Ulrich Galla, Eckhard Dinjus, Bernd Hitzmann, Tommy Larsen and Sune D. Nygaard. Fuel 90, 555-562 (2011).

DOI: 10.1016/j.fuel.2010.10.007

Google Scholar

[8] Zhu, J. Y. and Pan, X. J. Bioresource Technology 101, 4992-5002 (2010).

Google Scholar

[9] Zhu, J.Y., Zhu, W., OBryan, P., Dien, B.S., Tian, S., Gleisner, R.and Pan, X.J. Appl. Microbiol. Biotechnol 86, 1355-1365(2010).

DOI: 10.1007/s00253-009-2408-7

Google Scholar

[10] Ibrahim, M. M., Agblevor, F. A. and El-Zawawy, W. K. Bioresources 5, 397-418 (2010).

Google Scholar

[11] Ramires, E. C., Megiatto, J. D., Gardrat, C., Castellan, A. and Frollini, E. Biotechnol Bioeng 107, 612-621, (2010).

DOI: 10.1002/bit.22847

Google Scholar

[12] Matsushita, Y., Inomata, T., Hasegawa, T. and Fukushima, K. Bioresource Technol 100, 1024-1026, (2009).

Google Scholar

[13] Bin, Y. and Kongrong, G. Journal of South China University of Technology (Nature Science) 25, 10-15 (1997).

Google Scholar

[14] Pingkai, O., Chong, C. and Yuru, C. Chemistry and Industry of Forest Products 13, 77-82 (1993).

Google Scholar

[15] Pala, H., Lemos, M. A., Mota, M. and Gama, F. M. Enzyme Microb Tech 29, 274-279 (2001).

Google Scholar

[16] Nabarlatz, D., Ebringerová, A. and Montané, D. Carbohyd Polym 69, 20-28 (2007).

Google Scholar

[17] M. A. Gilarrahz, M. Oliet, F. Rodriguez, and J. Tijero. The Canadian Journal of Chemical Engineering 76, 253-260 (1998).

DOI: 10.1002/cjce.5450760213

Google Scholar

[18] Zhu, W., Zhu, J. Y., Gleisner, R. and Pan, X. J. Bioresource Technol 101, 2782-2792 (2010).

Google Scholar