A Facile Approach to α-FeOOH Nanorods with High Aspect Ratios

Article Preview

Abstract:

α-FeOOH nanorods were fabricated via a one-step hydrothermal approach using iron nitrate hydrate (Fe(NO3)3·9H2O) as iron source, cetyltrimethylammonium bromide (CTAB) as a template and acetic acid (CH3COOH) solution as solvent. XRD, SEM, TEM, and TGA were applied to characterize the samples. The as-prepared α-FeOOH nanorods are around 50 nm in diameters and 1 µm in length. The aspect ratio is 20. The XRD and TEM results indicated that both CTAB and CH3COOH were crucial for the formation of α-FeOOH nanorods. The heat treatment at the temperature of 250°C led to the transformation of α-FeOOH to α-Fe2O3, and the crystal phase transformation was completed at 340°C. The lower transformation temperature compared to bulk α-FeOOH could be attributed to the decreased size of the as-prepared sample.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2327-2330

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Xia , P. Yang, Y. Sun, et al.: Adv. Mater. Vol. 15 (2003), p.353

Google Scholar

[2] A.M. Taurino, A. Forleo, L. Francioso, et al.: Appl. Phys. Lett. Vol. 88 (2006), p.152111

Google Scholar

[3] C. Z. Wu, P. Yin, X. Zhu, et al.: J. Phys. Chem. B. Vol. 110 (2006), p.17806

Google Scholar

[4] H.Q. Le, S.J. Chua, Y.W. Koh, et al.: J. Cryst. Growth. Vol. 293 (2006), p.36

Google Scholar

[5] D.-F. Zhang, L.-D. Sun, C.-J. Jia, et al.: J. AM. CHEM. SOC. Vol. 127 (2005), p.13492

Google Scholar

[6] X.H. Li, W.M. Liu, H.L. Li: Appl. Phys. A-Mater. Vol. 80 (2005), p.317

Google Scholar

[7] Z.-Y. Yuan, B.-L. Su: Colloids Surfaces A. Vol. 241 (2004), p.173

Google Scholar

[8] J. He, W. H. Ma, J. J. He, et al.: Appl. Catal. B- Environ. Vol. 39 (2002), p.211

Google Scholar

[9] J. He, W. H. Ma, W. J. Song, et al.: Water Res. Vol. 39 (2005), p.119

Google Scholar

[10] L. Li, R. Stanforth: J. Colloid. Interf. Sci. Vol. 230 (2000), p.12

Google Scholar

[11] J. D. Ostergren, G. E. Brown, Jr., et al.: J. Colloid. Interf. Sci. Vol. 225 (2000), p.483

Google Scholar

[12] K. Kaiser: Org. Geochem. Vol. 34 (2003), p.1569

Google Scholar

[13] F. X. Geng, Z. G. Zhao, H. T. Cong, et al.: Mater. Res. Bull. Vol. 41 (2006), p.2238

Google Scholar

[14] R. L. Penn, J. J. Erbs, D.M. Gulliver: J. Cryst. Growth Vol. 293 (2006), p.1

Google Scholar

[15] M. Risti´c, S. Musi´c, M. Godec: J. Alloy. Compd. Vol. 417 (2006), p.292

Google Scholar

[16] B. Tang, G. L. Wang, L. H. Zhuo, et al.: Inorg. Chem. Vol. 45 (2006), p.5196

Google Scholar

[17] D.-E. Zhang, X.-J. Zhang, X.-M. Ni, et al.: Mater. Lett. Vol. 60 (2006), p. (1915)

Google Scholar

[18] S. Krehula, S. Musi´c: J. Alloy. Compd. Vol. 416 (2006), p.284

Google Scholar

[19] S. Krehula, S. Popovic´, S. Music´: Mate. Lett. Vol. 54 (2002), p.108

Google Scholar

[20] M. A. Dar, S. K. Kulkarni, Z. A. Ansari, et al.: J. Mater. Sci. Vol. 40 (2005), p.3031

Google Scholar

[21] C. Sudakar, G.N. Subbanna, T.R.N. Kutty: J. Mater. Chem. Vol. 12 (2002), p.107

Google Scholar

[22] J. Yang, S. Mei, S. Quaresma, P. Norby, J. M. F. Ferreira: Acta Mater. Vol. 53 (2005), P. 1479

Google Scholar