Ultrasonic-hydrothermal Synthesis and Characterization of Mesoporous Anatase TiO2 Microspheres

Article Preview

Abstract:

Mesoporous TiO2 microspheres with a combination of large surface and high crystallinity were fabricated by an ultrasonic-hydrothermal method with Octadecylamine as a structure-directing agent and tetrabutyl titanate as a precursor. The mesoporous materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption–desorption measurements, and UV–visible diffuse reflectance spectroscopy (UV-vis). Low-angle XRD and TEM images indicated that the disordered wormhole-like mesoporous architecture of TiO2 microspheres with diameters of about 200-400 nm were actually formed by agglomerization of nanoparticles with an average size of about 10nm. The analysis from N2 adsorption–desorption isotherms showed that the surface area of mesoporous sample was 204.7 m2g-1, with a pore size of 4.3 nm and pore volume of 0.263 cm3g-1 after calcined at 673 K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2323-2326

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. S. Kim, S. J. Han, S. Y. Kwak: J. Collid. Interf. Sci. Vol. 85 (2007), p.316

Google Scholar

[2] R. Linacero, J. Aguado-Serrano, M. L. Rojas-Cervantes: J. Mater. Sci. Vol. 2457 (2006), p.41

Google Scholar

[3] Y. Wang, X. Tang, L. Yin, W. Huang, Y. R. Hacohen, A. Gedanken: Adv. Mater. Vol. 1183 (2000), p.12

Google Scholar

[4] I. Kartini, D. Menzies, D. Blake, J. C. D. Costa, P. Meredith, J. D. Riches, G. Q. Lu: J. Mater. Chem. Vol. 2917 (2004), p.14

Google Scholar

[5] D. S. Kim, S. Y. Kwak: Appl. Catal. a-Gen. Vol. 110 (2007), p.323

Google Scholar

[6] T. Z. Ren, Z.Y. Yuan, B. L. Su: Chem. Phys. Lett. Vol. 170 (2003), p.374

Google Scholar

[7] C. Wang, Q. Li, R. Wang: J. Mater. Sci. Vol. 1899 (2004), p.39

Google Scholar

[8] Z. M. Liu, J. L. Zhang, B. X. Han, J. M. Du, T. C. Mu, Y. Wang, Z. Y. Sun: Micropor. Mesopor. Mater. Vol. 169 (2005), p.81

Google Scholar

[9] Y. Q. Wang, S. G. Chen, X. H.Tang, O. Palchik, A. Zaban, Y. Kltypin, A. Gedanken: J. Mater. Chem. Vol. 521 (2001), p.11

Google Scholar

[10] J. Yu, G. Wang, B. Cheng, M. Zhou: Appl. Catal. B-Environ. Vol. 171 (2007), p.69

Google Scholar

[11] T. Sreethawong , Y. Suzuki, S. Yoshikawa: Catal. Commun. Vol. 119 (2005), p.6

Google Scholar

[12] H. Chen, K. Dai, T. Peng, H. Yang, D. Zhao: Mater. Chem. Phys. Vol. 176 (2006), p.96

Google Scholar