Devulcanization of Waste Tire Rubber Vulcanizate through a Mechanochemical Pan Milling at Ambient Temperature

Article Preview

Abstract:

The partially devulcanization of waste tire rubber vulcanizate was carried out with the newly developed mechanochemical pan mill, which can exert fairly strong compressing and shearing force on the milling materials and avoid the agglomeration phenomenon. The experimental results indicate that the particle size is greatly reduced and the surface is fluffier, crosslink density is reduced to one half without large degradation and heavy damage of rubber backbones. The study of mechanical properties of revulcanizate of SBR and waste tire rubber blends at 1:1 ratio indicates that elongation at break increased from 302% to 447.6%. But the properties of tensile strength, modulus and hardness are reduced. The mechanochemical pan milling process is a simple, low cost and environmental-benign process for waste tire rubber devulcanization at ambient temperature without any use of chemicals and can be used at commercial-scale.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2503-2510

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. De, A. Das, D. De, B. Dey, S. C. Debnath, B. C. Roy: Eur Polym J Vol.42 (2006), p.917

Google Scholar

[2] D. De, B. Adhikari, S. Maiti: J Polym Mater Vol.14 (1997), p.333

Google Scholar

[3] E. Bilgili, H. Arastoopour, B. Bernstein: Powder Technol Vol.115 (2001), p.265

Google Scholar

[4] X. X. Zhang, C. H. Lu, M. Liang: Plastics, Rubber and Composites Vol.36 (2007), p.370

Google Scholar

[5] J. E. Morin, D. E. Williams, R. J. Farris: Rubber Chem Technol Vol.75 (2002), p.955

Google Scholar

[6] A. I. Isayev, S. P. Yushanov, S. Kim, V. Y. Levin: Rheol Acta Vol.35 (1996), p.616

Google Scholar

[7] C. H. Scuracchio, D. A. Waki, M. L. C. P. Da Silva: Journal of Thermal Analysis and Calorimetry Vol.87 (2007), p.893

Google Scholar

[8] D. P. Sprott, University of Ottawa, Ottawa: (1999)

Google Scholar

[9] K. A. J. Dijkhuis, University of Twente, Enschede: (2008)

Google Scholar

[10] D. De De, S. Maiti, B. Adhikari: J Appl Polym Sci Vol.75 (2000), p.1493

Google Scholar

[11] D. De, S. Maiti, B. Adhikari: J Appl Polym Sci Vol.73 (1999), p.2951

Google Scholar

[12] U. S. Ishiaku, C. S. Chong, H. Ismail: Polym Test Vol.18 (1999), p.621

Google Scholar

[13] D. E. Williams, Vol. Ph.D, University of Massachusetts Amherst, 2004.

Google Scholar

[14] S. K. De, A. Isayev, K. Khait, CRC Press, 2005, 327.

Google Scholar

[15] C. H. Scuracchio, D. A. Waki, R. E. S. Bretas: Polimeros Vol.16 (2006), p.46

Google Scholar

[16] E. Bilgili, H. Arastoopour, B. Bernstein, Annual Recycling Conference, ARC 1998, 319.

Google Scholar

[17] E. Bilgili, H. Arastoopour, B. Bernstein: Powder Technol Vol.115 (2001), p.277

Google Scholar

[18] X. X. Zhang, C. H. Lu, M. Liang: J Appl Polym Sci Vol.103 (2007), p.4087

Google Scholar

[19] X. Zhang, C. Lu, M. Liang: Polymeric Materials Science and Engineering Vol.22 (2006), p.118

Google Scholar

[20] P. J. Flory, J. John Rehner: The Journal of Chemical Physics Vol.11 (1943), p.521

Google Scholar

[21] A. J. Marzocca: Eur Polym J Vol.43 (2007), p.2682

Google Scholar

[22] G. Kraus: J Appl Polym Sci Vol.7 (1963), p.861

Google Scholar