Structural, Optical and Photocatalytic Photodegradation Properties of Zn1−xMnxO Prepared by the Sol-Gel Process

Article Preview

Abstract:

Effect of Mn doping on the structural, photoluminescence and photocatalytic photodegradation properties of Zn1−xMnxO have been studied. The Zn1−xMnxO powders and thin films were synthesized by the sol-gel, spin coating and high temperature annealing processes. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), photoluminescence and UV-visible (UV-Vis) spectroscopy. XRD analysis showed that Zn1−xMnxO can keep a single phase of wurtzite structure at low Mn doping. UV-Vis spectra of Mn-doped samples showed that Mn doping can enhance the decolorization efficiency of methyl orange at optimal Mn doping levels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2962-2967

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. Matthews,Water Res. 25 (1991) 1169.

Google Scholar

[2] A. Sharma, P. Rao, R.P. Mathur, S.C. Ameta, J. Photochem. Photobiol. A: Chem. 86 (1995) 197.

Google Scholar

[3] C.A.K. Gouve, F. Wypych, S.G. Moraes, et.al., Chemosphere 40 (2000) 427.

Google Scholar

[4] S. Sakthivel, B. Neppolian, M.V. Shankar, et.al., Sol. Energy Mater. Sol. Cells 77 (2003) 65.

Google Scholar

[5] Ruh Ullah, Joydeep Dutta, Journal of Hazardous Materials 156 (2008) 194–200

Google Scholar

[6] T.Z. Tong, J. L. Zhang, B. Z. Tian, et.al., Journal of Hazardous Materials 155 (2008) 572–579

Google Scholar

[7] S. Ekambaram, Y. Iikubo, A. Kudo, J. Alloys Compd. 433 (2007) 237.

Google Scholar

[8] H.F. Lin, S.C. Liao, S.W. Hung, J. Photochem. Photobiol. A: Chem. 174 (2005)82.

Google Scholar

[9] V. Vamathevan, H. Tse, R. Amal, G. Low, S. McEvoy, Catal. Today 68 (2001) 201.

Google Scholar

[10] J.C. Yu, J. Lin, R.W.M. Kwok, J. Phys. Chem. B 102 (1998)5094.

Google Scholar

[11] K. Wilke, H.D. Breuer, J. Photochem. Photobiol. A: Chem. 121(1999) 49.

Google Scholar

[12] A.A. Khodja, T. Sehili, J.F. Pilichows, et.al, J. Photochem. Photobiol. A: Chem.141 (2001) 231

Google Scholar

[13] I. Poulios, I. Tsachpinis, J. Chem. Technol. Biotechnol. 74 (1999) 349.

Google Scholar

[14] K. Gouvea, F. Wypych, S.G. Moraes, et. al.,Chemosphere 40 (2000) 433.

Google Scholar

[15] S. Dindar, J. Icli, Photochem. Photobiol. A: Chem. 140 (2001) 263

Google Scholar

[16] N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A: Chem. 162(2004) 317.

Google Scholar

[17] R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, Appl. Surf. Sci. 227 (2004) 312–317.

Google Scholar

[18] K.Vanhesuden W.L. Warren, J.A. Voigt,et. al., Appl. Phys. Lett. 67 (1995) 1280–1282.

Google Scholar

[19] S. Colis, H. Bieber, S. Begin-Colin, et.al., Chem. Phys. Lett. 422(2006) 529–533.

Google Scholar

[20] Q. Xiao, L. Ouyang, Journal of Alloys and Compounds 479 (2009) L4–L7

Google Scholar

[21] H. Yamashita, Y. Ichihashi, S.G. Zhang, Y. et. al., Appl. Surf. Sci.121/122 (1997) 305.

Google Scholar

[22] A.VanDijken, E.A. Meulenkamp, D.Vanmaekelbergh, A.Meijerink, J. Lumin. 90 (2000) 123

Google Scholar

[23] M.Vishwas, K.Narasimha Rao, K.V. Arjuna Gowda,et.al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. (2010)

DOI: 10.1016/j.saa.2010.04.032

Google Scholar

[24] S.Sakthivel, B.Neppolian, B.V. Shankar, et.al., Sol Ener. Mater. Sol. Cells 77(2003) 68.

Google Scholar

[25] S.K. Kansal, M.Singh, D.Sud, Journal of Hazardous Materials 141 (2007) 581.

Google Scholar