[1]
S. S. Mahapatra and A. Patnaik, Parametric Optimization of Wire Electrical Discharge Machining (WEDM) Process using Taguchi Method J. of the Braz. Soc. of Mech. Sci. & Eng. Vol. XXVIII (2006), No. 4.
DOI: 10.1590/s1678-58782006000400006
Google Scholar
[2]
K. Kanlayasiri, S. Boonmung Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model, J. Mats. Proc. Techn. Vol. 192-193 (2007) 459-464.
DOI: 10.1016/j.jmatprotec.2007.04.085
Google Scholar
[3]
K. H. Ho and S.T. Newman, State of electrical discharge machining (EDM), Int. J. mach. Tools & Manuf. Vol. 43 (2003). 1287-1300.
DOI: 10.1016/s0890-6955(03)00162-7
Google Scholar
[4]
Suleiman Abdulkareem, Ahsan Ali Khan and Mohamed Konneh Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining, Int. J. Adv. Manufact. Techn. (2009), DOI: 10. 1007/s00170-009-2060-5.
DOI: 10.1007/s00170-009-2060-5
Google Scholar
[5]
Suleiman Abdulkareem, Ahsan Ali Khan and Mohamed Konneh, Cooling Effect on Electrode and Process Parameters in EDM, Int. J. Mats. & Manuf. Proc. (IJMMP) DOI.
Google Scholar
[6]
Y.H. Guu, and H. Hocheng, Improvement of fatigue life of electrical discharge machined AISI D2 tool steel by TiN coating, Mat. Sci. Eng. A 318 (2001) 155-162.
DOI: 10.1016/s0921-5093(01)01268-0
Google Scholar
[7]
A. Ramulu, G. Paul, J. Patel, EDM surface effects on the fatigue strength of a 15 Vol% SiCp/Al metal matrix composite material, Compos. Struct. 54 (2001) 79–86.
DOI: 10.1016/s0263-8223(01)00072-1
Google Scholar
[8]
Godfrey C. Onwubolu. A note on surface roughness prediction model in machining of carbon steel by PVD coated cutting tools,. American Jour. of App. Scie. 2 (6): 2005. 1109-1112.
DOI: 10.3844/ajassp.2005.1109.1112
Google Scholar
[9]
L. Velterop. Influence of wire electrical discharge machining on the fatigue properties of high strength stainless steel. (National Aerospace Laboratory) NLR. A report presentation held at Thermec, (2003) Madrid, Spain. DOI.
DOI: 10.4028/www.scientific.net/msf.426-432.1017
Google Scholar
[10]
D.K. Aspinwall, S.L. Soo, A.E. Berrisford, G. Walder Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology CIRP Annals – Manuf. Techn. 57 (2008) 187-190.
DOI: 10.1016/j.cirp.2008.03.054
Google Scholar
[11]
ZhanBo Yu, Takahashi Jun and Kunieda Masanori, Dry electrical discharge machining of cemented carbide J. Mats Proc. Techn. Vol. 149, Issues 1-3, (2004), 353-357.
DOI: 10.1016/j.jmatprotec.2003.10.044
Google Scholar
[12]
R.A. Mahdavinejad and A. Mahdavinejad, ED machining of WC-Co. J. Mats. Proc. Techn. Vol. 162-163 (2005) 637-643.
DOI: 10.1016/j.jmatprotec.2005.02.211
Google Scholar
[13]
S. Singh, S. Maheshwari and P.C. Pandey, Some investigation into the electrical discharge machining of hardened tool steel using different electrode materials J. Mats Proc. Techn. Vol. 149, (2004), 272-277.
DOI: 10.1016/j.jmatprotec.2003.11.046
Google Scholar
[14]
S.H. Lee and X.P. Li, Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J. Mats Proc. Techn. Vol. 115 (2001), 344-358.
DOI: 10.1016/s0924-0136(01)00992-x
Google Scholar