Failure Prediction in Drawing Processes of Mg Alloy Sheet by the FEM and Ductile Fracture Criterion

Article Preview

Abstract:

In this work, in order to predict the forming failure of AZ31 magnesium alloy sheet in drawing process at elevated temperatures, a series of square cup tests at various temperatures and FE analyses were carried out. The critical damage values and the mechanical properties dependent on strain rates and temperatures were evaluated from uniaxial tensile tests and those were utilized to the forming failure prediction using FE analysis. Based on the plastic deformation history obtained from FE analysis and Cockcroft and Latham’s ductile fracture criterion, the fracture initiation time and location were predicted and verified with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

813-818

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.W. El-Morsy, K.I. Manabe: Materials Letters, Vol. 60 (2006) pp.1866-1870.

Google Scholar

[2] T. Walde, H. Riedel: Acta Materialia Vol. 55 (2007) pp.867-874.

Google Scholar

[3] K.F. Zhang. D.L. Yin, D.Z. Wu: Int. J. Mach. Tools Manufact. Vol. 46 (2006) pp.1276-1280.

Google Scholar

[4] G. Palumbo, D. Sorgente, L. Tricarico, S.H. Zhang, W.T. Zheng: J. Mater. Process. Technol. (2007).

Google Scholar

[5] Q.F. Chang, D.Y. Li, Y. H. Peng, X. Q. Zeng: Int. J. Mach. Tools Manufact. Vol. 47 (2007) pp.436-443.

Google Scholar

[6] S.H. Zhang, K. Zhang, Y.C. Xu, Z.T. Wang, Y. Xu, Z.G. Wang: J. Mater. Process. Technol. Vol. 185 (2007) pp.147-151.

Google Scholar

[7] F.K. Chen, T.B. Huang, C.K. Chang: Int. J. Mach. Tools Manufact. Vol. 43 (2007) pp.1553-1559.

Google Scholar

[8] H. Palaniswamy, G. Ngaile, T. Altan: J. Mater. Process. Technol. Vol. 146 (2004) pp.52-60.

Google Scholar

[9] F.K. Chen, T.B. Huang: J. Mater. Process. Technol. Vol. 142 (2003) pp.643-647.

Google Scholar

[10] S. Lee, Y.H. Chen, J.Y. Wang: J. Mater. Process. Technol. Vol. 124 (2002) pp.19-24.

Google Scholar

[11] H. Takuda, T. Yoshii, N. Hatta: J. Mater. Process. Technol. Vol. 89-90 (1999) pp.135-140.

Google Scholar

[12] H. Takuda, T. Enami, K. Kubota, N. Hatta,: J. Mater. Process. Technol. Vol. 101 (2000) pp.281-286.

Google Scholar

[13] E. Doege, K. Dröder: J. Mater. Process. Technol. Vol. 115 (2001) pp.14-19.

Google Scholar

[14] S. Yoshihara, B.J. MacDonald, H. Nishimura, H. Yamamoto, K. Manabe: J. Mater. Process. Technol. Vol. 153-154 (2004) pp.319-322.

Google Scholar

[15] M.G. Cockcroft, D.J. Latham: J. Inst. Met. Vol. 96 (1968) pp.33-39.

Google Scholar

[16] S.E. Clift, P. Hartley, C.E.N. Sturgess, G.W. Rowe: Int. J. Mech. Sci. Vol. 32 (1990) pp.1-17.

Google Scholar

[17] P. Brozzo, B. deLuka, R. Rendia: IDDRG (1972).

Google Scholar

[18] M. Oyane, T. Sato, K. Okimoto, S. Shima: J. Mech. Work. Tech. Vol. 4 (1980) pp.65-81.

Google Scholar