Temperature Effects on the Preparation of Multi-Walled Carbon Nanotubes by Floating Catalytic Chemical Vapor Deposition

Article Preview

Abstract:

In this study, we report the synthesis of carbon nanotubes by floating catalytic chemical vapor deposition, which employs ferrocene as the catalyst precursors and ethanol as carbon source. We obtained massive deposits. The deposits were characterized by scanning electron microscopy, transmission electron microscopy, and visual laser Raman spectroscopy. We discussed the effects of synthesis temperature on the synthesis of carbon nanotubes by floating catalytic chemical vapor deposition. Our results indicated that the synthesis temperature could affect not only on the graphitization degree, but also on the aligned growth of carbon nanotubes and the diameter of carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

837-842

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] S.J. Tans, A.R.M. Verschueren and C. Dekker: Nature Vol. 393 (1998), p.49.

Google Scholar

[3] N.M. Rodriquez, M.S. Kim and R.T.K. Baker: J. Phys. Chem. Vol. 98 (1994), p.13108.

Google Scholar

[4] C. Park, P.E. Anderson, A. Chambers, C.D. Tan, R. Hidalgo and N.M. Rodriguez: J. Phys. Chem. B Vol. 103 (1999), p.10572.

Google Scholar

[5] B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou: Chem. Phys. Lett. Vol. 307 (1999), p.153.

Google Scholar

[6] C. Bower, R. Rosen, L. Jin, J. Han and O. Zhou: Appl. Phys. Lett. Vol. 74 (1999), pp.3317-3319.

Google Scholar

[7] T.W. Ebbessen and P.M. Ajayan: Nature Vol. 358 (1992), p.220.

Google Scholar

[8] L. Yuan, K. Saito, C. Pan, F.A. Williams and A.S. Gordon: Chem. Phys. Lett. Vol. 340 (2001), p.237.

Google Scholar

[9] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton: Nature Vol. 388 (1997), p.52.

DOI: 10.1038/40369

Google Scholar

[10] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell and H.J. Dai: Science, Vol. 283 (1999), p.512.

Google Scholar

[11] W.Z. Li, S.S. Xie, L.X. Qlan, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao and G. Wang: Science Vol. 274 (1996), p.1701.

Google Scholar

[12] F. Tuinstra and J.L. Koenig: J. Chem. Phys. Vol. 53 (1970), p.1126.

Google Scholar

[13] C. Singh, T. Quested, C.B. Boothroyd, P. Thomas, I.A. Kinloch, A.I. Abou-Kandil and A.H. Windle: J. Pyhs. Chem. B Vol. 106 (2002), p.10915.

DOI: 10.1021/jp026159a

Google Scholar

[14] K.H. Liao and J.M. Ting: Carbon Vol. 42 (2004), p.509.

Google Scholar

[15] Z.P. Zhou, L.J. Ci, L. Song, X.Q. Yan, D.F. Liu, H.J. Yuan, Y. Gao, J.X. Wang, L.F. Liu, W.Y. Zhou, G. Wang and S.S. Xie: Carbon Vol. 41 (2003), p.2607.

DOI: 10.1016/s0008-6223(03)00336-1

Google Scholar