Summary of Fluid Simulation Based on Physical Model

Article Preview

Abstract:

Fluid animation based on physical model has produced a number of new research achievements ,and it has also become a hot spot of research in the field of computer animation in recent years.This paper presents a survey on the development of fluid simulation animation based on physical model,with Summarizing all kinds of methods adopted in the research direction.The methods applied mainly include Euler method and Lagrangian method which are compared in this paper. Finally ,this paper introduces the direction of future research.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

1326-1331

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fedkiw Ronald, Stam Jos, Jensen Henrik Wann. Visual simulation of smoke[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, 2001. 15-22.

DOI: 10.1145/383259.383260

Google Scholar

[2] Hinsinger Damlen, Ncyret Fabfiee, Cani Marie Paule Interactive animation of ocean wave$[A]In: Proceedings of the 2002 ACM SIGGRAPH / Eurograph[es Symposium On ComputerAnimation, SanAntonio, Texas, 2002. 161-166.

DOI: 10.1145/545261.545288

Google Scholar

[3] Nguyen Due Quang, Fedkiw Ronald, Jensen Henrik Wann Physically based modeling and animation of fire[J]. ACM Transactions on Graphics, 2002, 721-728.

DOI: 10.1145/566654.566643

Google Scholar

[4] Yngve Gary D, O'Brien James F, Hodgins Jessiea K. Animating explosions [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPll, New Orleans Louisiana. 2000. 29-36.

Google Scholar

[5] Hong Jeong Mo, Kim Chang Hun. Animation of bubbles inliquid, Computer Graphics Forum, 2003, 22(3): 253-262.

DOI: 10.1111/1467-8659.00672

Google Scholar

[6] Liu Y Q, Liu X H, Zhu H B, et al. Physically based fluid simulation in computer animation. J Comput Aid Des Comput Graph, 2005, 17: 12.

Google Scholar

[7] Lamorlette Amauld. Foster Nick Structural modeling of flames for a production environment [J] . ACM Transactions on Graphics, 2002. 21(3): 729-735.

DOI: 10.1145/566654.566644

Google Scholar

[8] Stare Jos. Stable fluids[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, 1999 12l-128.

Google Scholar

[9] Liu Youquan, Liu Xuehui, Wu Enhua. Real-time 3D fluid simulation on GPU with complex obstacles[A]. In: Proceedings of Pacific Graphics 2004, Seoul, 2004. 247-256.

DOI: 10.1109/pccga.2004.1348355

Google Scholar

[10] Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. Comput Graph, 1990, 24 (4): 49-57.

DOI: 10.1145/97880.97884

Google Scholar

[11] Bridson R. Shallow water discretization. Lect Note Animat Phys, (2005).

Google Scholar

[12] Foster N, Metaxas D. Realistic animation of liquids. Graph Model Image Process, (2007).

Google Scholar

[13] Stam J. Stable fluids. In: Proceedings of the 26th Anuual Conference on computer graphics and interactive techniques, SIGGRAPHP 99 . New York, (1999).

DOI: 10.1145/311535.311548

Google Scholar

[14] Foster N, Metaxas D. Modeling the motion of a hot, turbulent gas. In: Proceeding of the 24th Anuual Conference on computer graphics and interactive techniques, SIGGRAPHP 97, (1997).

DOI: 10.1145/258734.258838

Google Scholar

[15] Nguyen D Q, Fedkiw R, Jensen H W, Physically based modeling and animation of fire. (2002).

Google Scholar

[16] Carlson M, Mucha P J, van Horn R, et al. Mellting and flowing. In: Proceeding of the 2002 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA 02. New York: ACM, 2002. 167-174.

DOI: 10.1145/545261.545289

Google Scholar

[17] Goktkin T G, Bargteil A W, Obrien J F. A method for animating viscoelastic fluids. In: ACM SIGGRAPH 2004. New York: ACM, 2004, 463-468.

DOI: 10.1145/1186562.1015746

Google Scholar

[18] Hong J M, Kim C H. Discontinuous fluids. ACM Trans Graph, (2005).

Google Scholar

[19] Wang H, Mucha P J, Turk G. Water drops on surfaces. In: ACM SIGGRAPH (2005).

Google Scholar

[20] Kim B, Liu Y, Llamas I, et al. Simulation of bubbles in foam with the volume control method. ACM Trans Graph, (2007).

Google Scholar

[21] Reeves W T. Particles systems-a technique for modeling a class of fuzzy objects. Comput Graph, (1983).

Google Scholar

[22] Bridson R, Muller-Fischer M. Fluid simulation: SIGGRAPH 2007 Course Notes. In: ACM SIGGRAPH 2007. New York: ACM, 2007. 1-81.

DOI: 10.1145/1281500.1281681

Google Scholar

[23] Monaghan J J. Smoothed particle hydrodynamics. Annual Rev Astron Astr, 1992, 30: 543-574.

DOI: 10.1146/annurev.aa.30.090192.002551

Google Scholar

[24] Li Wei, Wei Xiaoming, Kaufman Arie. Implementing lattice Boltzmann computation on graphics hardware[J]. The Visual Computer, 2003, 19(718): 444-456.

DOI: 10.1007/s00371-003-0210-6

Google Scholar

[25] Hong J M, Lee H Y, Yoon J C, et al. Bubble alive. In: Turk G, ed. ACM SIGGRAPH Conference Proceedings. New York: ACM, 2008, 1-4.

Google Scholar

[26] Takahashi T, Fujii H, Kunimatsu A, et al. Realistic animation of fluid with splash and foam. Comput Graph Forum, 2003, 22(3): 391-400.

DOI: 10.1111/1467-8659.00686

Google Scholar