Melting and Freezing of Free Silver Nanoclusters

Article Preview

Abstract:

The melting and freezing with two different cooling rates of AgN (N= 140, 360, 532, 784, and 952) nanoclusters are simulated by using molecular dynamics technique with the frame work of embedded atom method. The potential energy as a function of temperature is obtained and the structural details are analyzed. The results reveal that the melting and freezing temperature increases almost linearly with the atom number of the clusters except for Ag360. All the silver nanoclusters have negative heat capacity around the phase transition temperature, and the clusters with slow cooling rate have icosahedral structure at 300 K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

184-189

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. –S. Nam, N.M. Hawang, B.D. Yu, and J. –K. Yoon: Phys. Rev. Lett. Vol. 89 (2002), p.275502.

Google Scholar

[2] G.A. Breaus, C.M. Neal, B. Cao, and M.F. Jarrold: Phys. Rev. Lett. Vol. 94 (2005), p.173401.

Google Scholar

[3] J. –X Yang, C. –F. Wei, and J.J. G: Physica B Vol. 405 (2010), p.4892.

Google Scholar

[4] Y. Suzuki, and K. Yamashita: Chem. Phys. Lett. Vol. 486 (2010), p.48.

Google Scholar

[5] F. Baletto, A. Rapallo, G. Rossi, and R. Ferrando: Phys. Rev. B Vol. 69 (2004), p.235421.

Google Scholar

[6] F. Erocolessi, W. Andreoni, and E. Tosatti: Phys. Rev. Lett. Vol. 66 (1991), p.911.

Google Scholar

[7] T.P. Martin: Phys. Rep. Vol. 273 (1996), p.199.

Google Scholar

[8] L.D. Marks: Rep. Prog. Phys. Vol. 57 (1994), p.603.

Google Scholar

[9] W. de Heer: Rev. Mod. Phys. Vol. 65 (1993), p.611.

Google Scholar

[10] J.A. Reyes-Nava, I.L. Garzo´n, and K. Michaelian: Phys. Rev. B Vol. 67 (2003), p.165401.

Google Scholar

[11] S.M. Foiles, M.I. Baskes, and M.S. Daw: Phys. Rev. B Vol. 33 (1986), p.7983.

Google Scholar

[12] V.G. Grigoryan, D. Alamanova, and M. Springborg: Phys. Rev. B Vol. 73 (2006), p.115415.

Google Scholar

[13] M. Schmidt, R. Kusche, B. V. Issendorff, H. Haberland, Nature 393 (1998) 238.

Google Scholar

[14] F. Baletto, and R. Ferrando: Rev. Mod. Phys. Vol. 77 (2005), p.371.

Google Scholar

[15] F. Delogu: Phys. Rev. B Vol. 72 (2005), p.205418.

Google Scholar

[16] A.A. Shvartsburg, and M. F. Jarrold: Phys. Rev. Lett. Vol. 85 (2000), p.2530.

Google Scholar

[17] J. Pawlow: Surf. Sci. Vol. 106, (1981) p.1.

Google Scholar

[18] D.D. Frantz: J. Chem. Phys. 115 (2001) 6136.

Google Scholar

[19] H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, and B.V. Issendorf: Phys. Rev. Lett. Vol. 94 (2005) p.035701.

Google Scholar

[20] M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmüller: B. V. Issendorff, and H. Haberland: Phys. Rev. Lett. Vol. 86 (2001), p.1191.

DOI: 10.1103/physrevlett.86.1191

Google Scholar

[21] J.A. Reyes-Nava, L. Garzón, and K. Michaelian: Phys. Rev. B Vol. 67 (2003), p.165401.

Google Scholar