Metric-Based Semi-Supervised Fuzzy C-Means Clustering

Article Preview

Abstract:

This paper presents a metric-based semi-supervised fuzzy c-means algorithm called MSFCM. Through using side information and unlabeled data together, MSFCM can be applied to both clustering and classification tasks. The resulting algorithm has the following advantages compared with semi-supervised clustering: firstly, membership degree as side information is used to guide the clustering of the data; secondly, through the metric learned, clustering accuracy can be greatly improved. Experimental results on a collection of real-world data sets demonstrated the effectiveness of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

166-171

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl. Constrained K-means clustering with background knowledge. In: Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, (2001), 577-584.

Google Scholar

[2] S. Basu, A. Banerjee, R.J. Mooney. Semi-Supervised clustering by seeding. In: Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, (2002), 19-26.

Google Scholar

[3] M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: Proceedings of International Conference on Machine Learning, (2004), 81-88.

DOI: 10.1145/1015330.1015360

Google Scholar

[4] S. Basu, M. Bilenko, R. J. Mooney. A Probabilistic Framework for Semi-Supervised Clustering. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and Data Mining, (2004), 59-68.

DOI: 10.1145/1014052.1014062

Google Scholar

[5] W. Tang, H. Xiong, S. Zhong, J. Wu. Enhancing semi-supervised clustering: a feature projection perspective. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, (2007), 707-716.

DOI: 10.1145/1281192.1281268

Google Scholar

[6] X.S. Yin, Q. Huang. Integrating Global and Local Structures in Semi-supervised Discriminant Analysis. The Third International Symposium on Intelligent Information Technology Application, (2009), 757-761.

DOI: 10.1109/iita.2009.323

Google Scholar

[7] B. Kulis, S. Basu, I. Dhillon, R.J. Mooney, Semi-supervised graph clustering: a kernel approach, in: Proceedings of the 22st International Conference on Machine Learning, (2005), 457-464.

DOI: 10.1145/1102351.1102409

Google Scholar

[8] B. Yan, C. Domeniconi, An adaptive kernel method for semi-supervised clustering, in: Proceedings of the 17th European Conference on Machine Learning, Berlin, Germany, (2006), 18-22.

Google Scholar

[9] X.S. Yin, S.C. Chen, E.L. Hu, D.Q. Zhang. Semi-supervised clustering with metric learning: An adaptive kernel method. Pattern Recognition, 43(4): 1320-1333 (2010).

DOI: 10.1016/j.patcog.2009.11.005

Google Scholar

[10] B.Y. Kang, S. Ko, D. Kim. SICAGO: Semi-supervised cluster analysis using semantic distance between gene pairs in Gene Ontology. Bioinformatics, 26 (10): 1384-1385 (2010).

DOI: 10.1093/bioinformatics/btq133

Google Scholar

[11] R. Filipovych, S.M. Resnick, C. Davatzikos. Semi-supervised cluster analysis of imaging data. NeuroImage, 35(10): 1168-1179 (2010).

DOI: 10.1016/j.neuroimage.2010.09.074

Google Scholar

[12] E. Yasunori, H. Yukihiro, Y. Makito. On semi-supervised fuzzy c-means clustering. IEEE International Conference on Fuzzy Systems, 2009, 1119-1124.

DOI: 10.1109/fuzzy.2009.5277177

Google Scholar

[13] T. Luis, B. Chitta, K. Seungchan. Fuzzy c-means clustering with prior biological knowledge. Journal of Biomedical Informatics, 42(1): 74-81 (2009).

Google Scholar

[14] N. Grira, M. Crucianu, N. Boujemaa. Active Semi-Supervised Fuzzy Clustering, Pattern Recognition. 41(5): 1851-1861 (2008).

DOI: 10.1016/j.patcog.2007.10.004

Google Scholar

[15] D.Q. Zhang, K.R. Tan, S.C. Chen. Semi-supervised kernel-based fuzzy c-means. In: Proceedings of the International Conferences on Neural Information Processing (ICONIP'04), India, LNCS3316, (2004), 1229-1234.

DOI: 10.1007/978-3-540-30499-9_191

Google Scholar

[16] H. Zhang, J. Lu. Semi-supervised fuzzy clustering: A kernel-based approach. Knowledge-Based Systems, 22(6): 477-481 (2009).

DOI: 10.1016/j.knosys.2009.06.009

Google Scholar

[17] E.P. Xing, A.Y. Ng, M.I. Jordan, S. Russell, Distance metric learning, with application to clustering with side-information, in: Advances in NIPS, MIT Press, Cambridge, MA, USA, (2003), 505-512.

Google Scholar

[18] S. Xiang, F. Nie, C. Zhang. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition, 41(12): 3600-3612 (2008).

DOI: 10.1016/j.patcog.2008.05.018

Google Scholar

[19] J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms, Plenum Press, (1981).

Google Scholar

[20] http: /www. ics. uci. edu/~mlearn/MLRepository. html.

Google Scholar