Convergence Analysis for Cubic Serendipity Finite Elements with Thirty-Two Degrees of Freedom

Article Preview

Abstract:

In this paper, we consider the Poisson problem with homogeneous Dirichlet boundary conditions on the bounded open domain and analyze convergence phenomena that appear by using cubic serendipity block elements with thirty-two degrees of freedom. By means of the standard Legendre polynomial technique, we derive an error estimate, which is not superconvergent and shows this serendipity element has not pointwise supercloseness properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

501-504

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Brandts and M. Krizek: History and future of superconvergence in three dimensional finite element methods, Proceedings of the Conference on Finite Element Methods: Three-dimensional Problems, GAKUTO International Series Mathematics Science Application, Gakkotosho, Tokyo, 15 (2001).

Google Scholar

[2] J. H. Brandts and M. Krizek: Gradient superconvergence on uniform simplicial partitions of polytopes, IMA J. Numer. Anal. 23 (2003), 489–505.

DOI: 10.1093/imanum/23.3.489

Google Scholar

[3] J. H. Brandts and M. Krizek: Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27–36.

Google Scholar

[4] C. M. Chen: Optimal points of stresses for the linear tetrahedral element (in Chinese), Nat. Sci. J. Xiangtan Univ. 3 (1980), 16–24.

Google Scholar

[5] C. M. Chen: Construction theory of superconvergence of finite elements (in Chinese), Hunan Science and Technology Press, Changsha, China, (2001).

Google Scholar

[6] L. Chen: Superconvergence of tetrahedral linear finite elements, Internat. J. Numer. Anal. Model. 3 (2006), 273–282.

Google Scholar

[7] G. Goodsell: Gradient superconvergence for piecewise linear tetrahedral finite el- ements, Technical Report RAL-90-031, Science and Engineering Research Council, Rutherford Appleton Laboratory, (1990).

Google Scholar

[8] G. Goodsell: Pointwise superconvergence of the gradient for the linear tetrahedral element, Numer. Methods Partial Differential Equations 10 (1994), 651–666.

DOI: 10.1002/num.1690100511

Google Scholar

[9] V. Kantchev and R. D. Lazarov: Superconvergence of the gradient of linear finite elements for 3D Poisson equation, B. Sendov, editor, Proceedings of the Conference on Optimal Algorithms, Bulgarian Academy of Sciences, Sofia, 1986, p.172–182.

Google Scholar

[10] Q. Lin and N. N. Yan: Construction and analysis of high efficient finite elements (in Chinese), Hebei University Press, Baoding, China, (1996).

Google Scholar

[11] R. C. Lin and Z. M. Zhang: Natural superconvergent points in 3D finite elements, SIAM J. Numer. Anal. 46 (2008), 1281–1297.

Google Scholar

[12] J. H. Liu and Q. D. Zhu: Uniform superapproximation of the derivative of tetra- hedral quadratic finite element approximation, J. Comput. Math. 23 (2005), 75–82.

Google Scholar

[13] J. H. Liu and Q. D. Zhu: Maximum-norm superapproximation of the gradient for the trilinear block finite element, Numer. Methods Partial Differential Equations 23 (2007), 1501–1508.

DOI: 10.1002/num.20237

Google Scholar

[14] J. H. Liu and Q. D. Zhu: Pointwise supercloseness of tensor-product block finite elements, Numer. Methods Partial Differential Equations 25 (2009), 990–1008.

DOI: 10.1002/num.20384

Google Scholar

[15] J. H. Liu and Q. D. Zhu: Pointwise supercloseness of pentahedral finite elements, Numer. Methods Partial Differential Equations 26 (2010), 1572–1580.

DOI: 10.1002/num.20510

Google Scholar

[16] A. Pehlivanov: Superconvergence of the gradient for quadratic 3D simplex finite elements, Proceedings of the Conference on Numerical Methods and Application, Bulgarian Academy of Sciences, Sofia, 1989, p.362–366.

Google Scholar

[17] A. H. Schatz, I. H. Sloan and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33 (1996), 505–521.

DOI: 10.1137/0733027

Google Scholar

[18] Z. M. Zhang and R. C. Lin: Locating natural superconvergent points of finite element methods in 3D, Internat. J. Numer. Anal. Model. 2 (2005), 19–30.

Google Scholar

[19] M. Zlamal: Superconvergence and reduced integration in the finite element method, Math. Comp. 32 (1978), 663–685.

DOI: 10.1090/s0025-5718-1978-0495027-4

Google Scholar

[20] J. H. Liu, D. C. Yin and Q. D. Zhu: A note on superconvergence of recovered gradients of tensor-product linear pentahedral finite element approximations. Proceedings of the 3rd International Conference on Computational Intelligence and Industrial Application 3 (2010).

DOI: 10.1109/icicis.2011.65

Google Scholar

[21] J. H. Liu, X. C. Huo and Q. D. Zhu: Pointwise supercloseness of quadratic serendipity block finite elements for a variable coefficient elliptic equation, Numer. Methods Partial Differential Equations. (published online).

DOI: 10.1002/num.20580

Google Scholar

[22] J. H. Liu and Q. D. Zhu: The estimate for the W1, 1-seminorm of discrete derivative Green's function in three dimensions (in Chinese), J. Hunan Univ. Arts Sci. 16 (2004), 1-3.

Google Scholar