Fracture Toughness of Polyamide 6/ Maleated Styrene-Ethylene-Butylene-Styrene/Silicon Carbide Nanocomposites

Article Preview

Abstract:

Polyamide 6 (PA6) based nanocomposites toughened with 20 wt% maleated styrene-ethylene-butylene-stryrene (mSEBS) reinforced with 1-7 wt% silicon carbide nanoparticles (SiCp) were fabricated via melt blending followed by injection molding. Tensile results showed that SiCp additions improve the Young’s modulus and tensile strength of PA6/mSEBS blends but decrease their tensile ductility and impact strength. EWF test revealed that the SiCp additions reduce both the specific essential work of fracture and specific non-essential plastic work of fracture. Thus SiCp additions are detrimental to the fracture toughness of PA6/mSEBS blend.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-233

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on: http: /iwww. plasticsportal. com/products/ultramid. html.

Google Scholar

[2] D.R. Paul and S. Newman, editors. Polymer blends (New York: Academic Press, 1978).

Google Scholar

[3] M.E. Zeynali, A.A. Yousefi and I. Soltani, Polym-Plast. Technol. Eng. Vol. 48 (2009), p.42.

Google Scholar

[4] O. Okada, H. Keskkula and D.R. Paul, J. Polym. Sci.: Part B: Polym. Phys. Vol. 42 (2004), p.1739.

Google Scholar

[5] C.J. Wu, J.F. Kuo and C.Y. Chen, Polym. Eng. Sci. Vol. 33 (1993), p.1329.

Google Scholar

[6] J.F. Ren, J.Q. Wang, H.G. Wang, J.Y. Zhang and S.R. Yang, J. Macromol. Sci. Part B Vol. 48 (2009), p.1069.

Google Scholar

[7] S.C. Tjong, S.A. Xu and Y.W. Mai, Mater. Sci. & Eng. A Vol. 347 (2003), p.338.

Google Scholar

[8] S. C. Tjong and S.A. Xu, J. Appl. Polym. Sci. Vol. 81 (2001), p.3231.

Google Scholar

[9] S.C. Tjong and S.P. Bao, J. Polym. Sci. Part B Vol. 43 (2005), p.585.

Google Scholar

[10] S.H. Lim, A. Dasari, Z.Z. Yu, Y.W. Mai and S. Liu, Compos. Sci. & Technol. Vol. 67 (2007), p.2914.

Google Scholar

[11] A. Dasari, Z.Z. Yu and Y.W. Mai, Polymer, Vol. 50 (2009), p.4112.

Google Scholar

[12] Y. Luo, M.Z. Rong and M.Q. Zhang, J. Appl. Polym. Sci. Vol. 104 (2007), p.2608.

Google Scholar

[13] Q. Xue and Q. Wang, Wear Vol. 213 (1997), p.54.

Google Scholar

[14] A. Pegoretti and T. Rico, Eng. Fract. Mech. Vol. 73 (2006), p.2486.

Google Scholar

[15] J. Wainstein, L.A. Fasce, A. Cassanelli and P.M. Frontini, Eng. Fract. Mech. Vol. 74 (2007), p. (2070).

Google Scholar

[16] K.B. Broberg, J. Mech. Phys. Solids Vol. 19 (1971), p.407.

Google Scholar

[17] K.B. Broberg, J. Mech. Phys. Solids Vol. 23 (1975), p.215.

Google Scholar

[18] Y.W. Mai and B. Cotterell, Int. J. Fract. Vol. 32 (1986), p.105.

Google Scholar

[19] Y.W. Mai, B. Cotterell, R. Horlyck and G. Vigna, Polym. Eng. Sci Vol. 27 (1987), p.804.

Google Scholar

[20] E. Clutton, in Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, (Eds: D.R. Moore, A. Pavan, J. G. Williams), Elsevier, New York (2001), p.177.

Google Scholar