Application of Thermodynamic and Kinetic Modeling to Diffusion Simulations in Nickel-Base Superalloy Systems

Article Preview

Abstract:

This paper presents a brief review, followed by some new results from recent diffusion simulations in Ni-base superalloy systems, performed by means of a thermodynamic and kinetic modeling approach as taken in the commercial finite-difference code DICTRA. The DICTRA code solves the multi-component diffusion equations, combining assessed thermodynamic and kinetic data in order to determine the full composition dependent interdiffusion matrix. The link between fundamental physics based models and critically assessed data allows simulations to be performed with realistic conditions on alloys of practical importance. Emphasis in this paper is on modeling and simulation of interdiffusion occurring between NiAl coatings and Ni-base superalloy substrates. For this purpose we have used the so-called homogenization approach to diffusion in multi-phase systems, recently implemented into the DICTRA software. The simulation results have been validated against experimental data and the agreement is very satisfactory given the complexity of the problem.

You have full access to the following eBook

Info:

[1] L. Kaufman, H. Bernstain, Computer Calculation of Phase Diagrams -with Special Reference to Refractory Metals, Academic Press, Inc., New York, (1970).

Google Scholar

[2] N. Saunders, A.P. Miodownik, CALPHAD, Calculation of Phase Diagrams, a Comprehensive Guide, (1998).

Google Scholar

[3] H. Ohtani, K. Ishida, Thermochimica Acta 314 (1998) 69-77.

Google Scholar

[4] N. Saunders, M. Fahrmann, C.J. Small, i:, Ninth International Symposium on Superalloys, Seven Springs, PA; USA, 2000, ss. 803-811.

Google Scholar

[5] J. Zhao, M.F. Henry, Advanced Engineering Materials 4 (2002) 501-507.

Google Scholar

[6] J. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26 (2002) 273-312.

DOI: 10.1016/s0364-5916(02)00037-8

Google Scholar

[7] S.G. Fries, B. Boettger, J. Eiken, I. Steinbach, Int. J. Mat. Res. (formerly Z. Metallkd. ) 100 (2009) 128-134.

Google Scholar

[8] B. Meurer, P.J. Spencer, D. Neuschutz, Zeitschrift Für Metallkunde 94 (2003) 139-143.

Google Scholar

[9] C. Walter, B. Hallstedt, N. Warnken, Materials Science and Engineering A 397 (2005) 385-390.

Google Scholar

[10] F. Tancret, Computational Materials Science 41 (2007) 13-19.

Google Scholar

[11] G. Bao, K. Shinozaki, M. Inkyo, T. Miyoshi, M. Yamamoto, Y. Mahara, H. Watanabe, Journal of Alloys and Compounds 419 (2006) 118-125.

DOI: 10.1016/j.jallcom.2005.10.009

Google Scholar

[12] P. Turchi, L. Kaufman, Z. Liu, Calphad 31 (2007) 237-248.

Google Scholar

[13] M. Miller, S. Babu, J. Vitek, Intermetallics 15 757-766.

Google Scholar

[14] G. Bao, M. Yamamoto, K. Shinozaki, Journal of Materials Processing Technology 209 (2009) 416-425.

Google Scholar

[15] Å. Gustafson, L. Höglund, J. Ågren, i:, Advanced Heat Resistant Steel for Power Generation; San Sebastian, San Sebatian, Spain, 1998, ss. 270-276.

Google Scholar

[16] C. Campbell, W. Boettinger, Metallurgical and Materials Transactions A 31 (2000) 2835-2847.

Google Scholar

[17] A. Engstrom, J. Morral, J. Agren, Acta Materialia 45 (1997) 1189-1199.

Google Scholar

[18] B. Baufeld, M. Bartsch, P. Broz, M. Schmücker, Materials Science and Engineering A 384 (2004) 162-171.

Google Scholar

[19] H. Chen, Z. Jin, C. Liu, K. Zhou, Journal of Thermal Spray Technology 13 (2004) 515-520.

Google Scholar

[20] T. Gómez-Acebo, B. Navarcorena, F. Castro, Journal of Phase Equilibria and Diffusion 25 (2004) 237-251.

DOI: 10.1361/15477030419496

Google Scholar

[21] C. Campbell, J. Zhao, M. Henry, Journal of Phase Equilibria and Diffusion 25 (2004) 6-15.

Google Scholar

[22] C. Campbell, J. Zhao, M. Henry, Materials Science and Engineering: A 407 (2005) 135-146.

Google Scholar

[23] K. Dahl, J. Hald, A. Horsewell, Defect and Diffusion Forum 258-260 (2006) 73-78.

DOI: 10.4028/www.scientific.net/ddf.258-260.73

Google Scholar

[24] A. Jung, A. Schnell, International Journal of Fatigue 30 (2008) 286-291.

Google Scholar

[25] A. Engström, L. Höglund, J. Ågren, Metallurgical and Materials Transactions A 25 (1994) 1127-1134.

Google Scholar

[26] H. Larsson, A. Engstrom, Acta Materialia 54 (2006) 2431-2439.

Google Scholar

[27] N. Dupin, B. Sundman, Scandinavian Journal of Metallurgy 30 (2001) 184-192.

Google Scholar

[28] J. Bratberg, TCNi1, Thermo-Calc Software AB, (2008).

Google Scholar

[29] A. Engström, J. Ågren, Zeitschrift Für Metallkunde 87 (1996) 92-97.

Google Scholar

[30] C. Campbell, B. Boettinger, U. Kattner, Acta Materialia 50 (2002) 775-792.

Google Scholar

[31] A. Engström, MOBNi1, Thermo-Calc Software AB, (2006).

Google Scholar

[32] C. Campbell, Acta Materialia 56 (2008) 4277-4290.

Google Scholar

[33] O. Wiener, Abh. Mat -Phy Kön Sächs Ges Wis 32 (1912) 509.

Google Scholar

[34] E. Perez, T. Patterson, Y. Sohn, Journal of Phase Equilibria and Diffusion 27 (2006) 659-664.

Google Scholar