On the Oxidation Resistance of Nickel-Based Superalloys

Article Preview

Abstract:

In this paper, the factors influencing the oxidation resistance of superalloys are studied. A model is proposed by which the Al2O3-forming properties of a given composition can be estimated, based upon the thermodynamic and kinetic factors influencing scale growth. The numerical modelling is tested by experimental work on a number of compositional variants of the newly-developed SCA425+ superalloy, which contains appreciable quantities of Cr. The modelling is shown to be in broad agreement with experiment. The effects of Al, Cr and Si on the oxidation resistance of this class of alloy have been rationalised.

You have full access to the following eBook

Info:

[1] R.V. Miner and C.E. Lowell: Effects of Silicon Additions on Oxidation and Mechanical Behavior of the Nickel-Base Superalloy B-1900. (NASA, U.S. 1975).

Google Scholar

[2] A. Sato, H. Harada, J. Ang, Y. Koizumi, T. Kobayashi, K. Kawagishi and H. Imai, in: Vol. 53 of Materials for Advanced Power Engineering 2006 Proceedings of the 8th Liége Conference Part 1, edited by J. Lecomte-Beckers, M. Carton, F. Schubert, P.J. Ennis. Schriften des Forschungszentrums Jülich, Reihe Energietechnik/ Energy Technology, (2006).

Google Scholar

[3] A.C. Yeh, K. Kawagishi, H. Harada, T. Yokokawa, Y. Koizumi, T. Kobayashi, J. Ping, J. Fujioka and T. Suzuki, in: Superalloys2008, edited by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.R. Woodard, TMS, (2008), p.619.

DOI: 10.7449/2008/superalloys_2008_619_628

Google Scholar

[4] J.L. Smialek, C.A. Barrett and J.C. Schaeffer: Materials Selection and Design, Vol. 20. edited by G. E Dieter. ASM International, (1997), p.589.

Google Scholar

[5] A. Sato, Y.L. Chiu and R.C. Reed: submitted to Acta Materialia (2010).

Google Scholar

[6] N. Birks, G.H. Meier and F.S. Pettit: Introduction to the high-temperature oxidation of metals. Cambridge University Press, (2006).

Google Scholar

[7] N. Saunders and A.P. Miodownik: CALPHAD Calculation of Phase Diagrams -A Comprehensive Guide-. edited by R.W. Cahn. PERGAMON MATERIALS SERIES, Vol. 1. PERGAMON, (1998).

DOI: 10.1016/s1470-1804(13)60012-7

Google Scholar

[8] O. Knacke, O. Kubaschewski and K. Hesselmann: Thermochemical properties of Inoganic substances. edited by O. Knacke, O. Kubaschewski, K. Hesselmann. Springer-Verlag Berlin, Heidelberg, (1991).

DOI: 10.1007/bf02561491

Google Scholar

[9] N. Birks, G.H. Meier and F.S. Pettit: JOM Vol. 46 (1994), p.42.

Google Scholar

[10] R.C. Reed: The Superalloys -fundamentals and applications-. Cambridge University Press, (2006).

Google Scholar

[11] M. Göbel, A. Rahmel and M. Schütze: Oxid. Met. Vol. 39 (1993), p.231.

Google Scholar

[12] G.H. Meier, F.S. Pettit and K. Onal: Interaction of Steam/Air Mixtures With Turbine Airfoil Alloys and Coatings Final Report. US Department of Energy, Morgantown Energy Technology Center, Contract Number DE-FE21-92MC29061, (2002).

Google Scholar

[13] K. Onal, M.C. Maris-Sida, G.H. Meier and F.S. Pettit, in: Superalloys2004 edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston. TMS, (2004), p.607.

Google Scholar

[14] K. Kawagishi, A. Sato, T. Kobayashi and H. Harada: J. Japan Inst. Metals Vol. 71 (2007), p.313.

Google Scholar

[15] J.H. Chen, P.M. Rogers and J.A. Little: Oxid. Met. Vol. 47 (1996), p.381.

Google Scholar

[16] B.A. Pint, J.R. Martin and L.W. Hobbs: Solid State Ionics Vol. 78 (1995), p.99.

Google Scholar