Dislocation Mechanisms during High Temperature Creep Experiments on MC2 Alloy

Article Preview

Abstract:

The creep behaviour of MC2 single crystal superalloy has been studied at 1150°C/80 MPa, with an applied load along [001] axis. The resulting dislocation microstructures were examined by transmission electron microscopy. The occurrence of a[010] type dislocations (with a zero Schmid factor) within the ordered γ' precipitates is often observed. It is shown that those dislocations moved by a climb process, based on a mechanism involving two dislocation systems and vacancy exchanges, as proposed in the literature. We calculate the vacancy fluxes associated with such a mechanism and show that the vacancy transportation can be easily insured by a simple diffusion process. This calculation shows that the diffusion and climbing steps do not seem to be the creep rate controlling mechanisms for those situations in MC2 alloy.

You have full access to the following eBook

Info:

[1] F.R.N. Nabarro and H.L. De Villiers : The physics of creep, (Taylor & Francis, London 1995).

Google Scholar

[2] M. Veron, Y. Brechet and F. Louchet: Acta Materialia, 44 (1996), p.3633.

Google Scholar

[3] S. Dryepondt, D. Monceau, F. Crabos and E. Andrieu: Acta Materialia, 53 (2005), p.4199.

DOI: 10.1016/j.actamat.2005.05.018

Google Scholar

[4] A. Raffaitin, D. Monceau, F. Crabos and E. Andrieu: Scripta Materialia, 56 (2007), p.277.

DOI: 10.1016/j.scriptamat.2006.10.026

Google Scholar

[5] J. Cormier, X. Milhet and J. Mendez: Acta Materialia, 55 (2007), p.6250.

Google Scholar

[6] F. Touratier, E. Andrieu, D. Poquillon and B. Viguier: Mater. Sci. and Eng., A 510-511 (2009), p.244.

Google Scholar

[7] J. Cormier, X. Milhet and J. Mendez: Journal of Materials Science, 42 (2007), p.7780.

Google Scholar

[8] C. Siret: PhD thesis, Institut National Polytechnique Université de Toulouse (2010).

Google Scholar

[9] A. Epishin and T. Link: Philosophical Magazine, 84 (2004), p. (1979).

Google Scholar

[10] P.M. Sarosi, R. Srinivasan, G.F. Eggeler, M.V. Nathal and M.J. Mills: Acta Materialia, 55 (2007), p.2509.

DOI: 10.1016/j.actamat.2006.11.045

Google Scholar

[11] A. Kostka, G. Malzer, G. Eggeler, A. Dlouhy, S. Reese and T. Mack: Journal of Materials Science 42 (2007), p.3951.

Google Scholar

[12] L.J. Carroll, Q. Feng and T.M. Pollock: Metallurgical and Materials Transactions A, 39 (2008), p.1290.

Google Scholar

[13] F. Touratier: PhD thesis, Institut National Polytechnique, Université de Toulouse (2008).

Google Scholar

[14] R. Srinivasan, G.F. Eggeler and M.J. Mills: Acta Materialia, 48 (2000), p.4867.

Google Scholar

[15] A. Dlouhy, R. Schäublin and G. Eggeler: Scripta Materialia, 39 (1998), p.1325.

Google Scholar

[16] T. Link, A. Epishin, M. Klaus, U. Brückner and A. Reznicek: Materials Science and Engineering: A, 405 (2005), p.254.

Google Scholar

[17] B. Viguier, F. Touratier and E. Andrieu, (2010) to be published.

Google Scholar

[18] F. Monpiou, L. Bresson, P. Cordier and D. Caillard: Philosophical Magazine, 83 (2003), p.3133.

Google Scholar

[19] F. Mompiou and D. Caillard: Acta Materialia, 56 (2008), p.2262.

Google Scholar

[20] F. Mompiou and D. Caillard: Materials Science and Engineering A, 483 - 484 (2008), p.143.

Google Scholar

[21] D. Caillard and J.L. Martin : Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford 2003).

Google Scholar

[22] G. Dlubek, O. Brümmer and N. Meyendorf: Physica Status Solidi, 39 (1977), p. K95.

Google Scholar

[23] H. Numakura, T. Ikeda, H. Nakajima and M. Koiwa: Materials Science and Engineering A, 312 (2001), p.109.

Google Scholar

[24] X. Zhang and C. Y. Wang: Acta Materialia, 57 (2008), p.224.

Google Scholar

[25] G.E. Murch and I.V. Belova: Journal of Materials Processing Technology, 118 (2001), p.82.

Google Scholar

[26] E. Partyka and R. Kozubski: Intermetallics, 12 (2004), p.213.

Google Scholar