Identifying Transition Rates of Ion Channels with One Loop

Article Preview

Abstract:

The constrained equations between transition rates and the derivative of open lifetime and shut lifetime distribution for a given state set of Markov Chain are provided. For gating scheme of ion channels with one loop, it is derived by those underlying information that all transition rates can be identified by their open and shut lifetime distributions at state 0 and any other two adjacent states.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 282-283)

Pages:

395-398

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Colquhoun and A.G. Hawkes: Pro.R.Soc.Lond.B Vol. 199 (1977), p.231

Google Scholar

[2] D. Colquhoun and A.G. Hawkes: Pro.R.Soc.Lond.Biol.Sci. Vol. 211 (1981), p.205

Google Scholar

[3] D. Colquhoun and A.G. Hawkes: Philos. Trans, R.Soc.Lond.Biol.Sci. Vol. 300 (1982), p.1

Google Scholar

[4] B. Sakemann, E. Neher: Single-Channel Recording (Plenum Press, London, 1982)

Google Scholar

[5] R. Horn, K. Lang: Biophys. Vol. 43 (1983), p.207

Google Scholar

[6] M. Wagner, S. Michalek and J. Timmer: Pro.R.Soc.Lond.Biol.Sci. Vol. 266 (1999), p. (1919)

Google Scholar

[7] X.Y. Xiang, X.Q. Yang, Y.C. Deng, J.F. Feng: J. Phys. A: Math. & Gen. Vol. 39 (2006), p.9477

Google Scholar

[8] X.Y. Xiang, Y.C. Deng, X.Q. Yang: Appl. Math. J. Chinese Univ. Ser. A Vol. 21 (2006), p.301

Google Scholar

[9] Y.C. Deng, S.L. Peng, M.P. Qian and J.F. Feng: J. Phys. A: Math. & Gen. Vol. 36 (2003), p.1195

Google Scholar

[10] X.Y. Xiang: Hunan Normal University Doctoral Dissertation (2007)

Google Scholar

[11] X.Y. Xiang, X.Q. Yang, Y.C. Deng: Appl. Math. J. Chinese Univ. Ser. A Vol. 24 (2009), p.146

Google Scholar

[12] N.P. Jewell: The Annals of Statistics Vol. 10 (1982), p.479

Google Scholar

[13] C.L. Keatinge: Proceeding of the Causality Actuarial Society Vol. 86 (1999), p.654

Google Scholar