Microstructure, Magnetic and Optical Properties of Metal/ Semiconductor Magnetic Granular Film

Article Preview

Abstract:

Fe/In2O3 magnetic granular films have been prepared by rf sputtering method. The results reveal that the nanometersized Fe particles uniformly dispersed in the amorphous matrix In2O3 for the as-deposited samples. At room temperature, the Fe0.35/(In2O3)0.65 film shows a superparamagnetic behavior. The average diameter of particles (d = 5 nm) estimated from the fitting values of the saturation magnetization of Fe particles MFe and magnetic moment m is fitted well with that observed by TEM. The spectra analyses indicate that the indirect photon transitions of granular Fex/ (In2O3)1-x films substitute for the direct photon transition of In2O3 film in the absorption process. The band gaps of magnetic granular films decrease monotonously with the increase of volume fraction of Fe particles in the magnetic granular films, and the tail width of localized states becomes wider in concentration range of Fe studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

2207-2210

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Q. Wang, P. Xiong, and G. Xiao, Investigation of giant magnetoresistance in magnetic, concentrated, nanostructured alloys, Phys. Rev. B 47 (1993) 8341

DOI: 10.1103/physrevb.47.8341

Google Scholar

[2] F. Parent, J. Tuaillon, L. B. Stern, V. Dupuis, B. Prevel, A. Perez, P. Melinon, G. Guiraud, R. Morel, A. Barthélémy, and A. Fert, Giant magnetoresistance in Co-Ag granular films preparedby low-energy cluster beam deposition, Phys. Rev. B 55 (1997)3683

DOI: 10.1103/physrevb.55.3683

Google Scholar

[3] G. Xiao and C. L. Chien, Giant magnetic coercivity and percolation effects in granular Fe-SiO2 solids., Appl.Phys.Lett. 51(1987)1280-1282

DOI: 10.1063/1.98705

Google Scholar

[4] L. Zhang and R. Z. Zhang, Giant Faraday rotation in Fe–ZnSe granular films, J.Magn.Magn. Mater. 320(2008)1849-1852

DOI: 10.1016/j.jmmm.2008.02.111

Google Scholar

[5] L. V. Lutsev, A. I. Stognij, and N. N. Novitskii, Giant magnetoresistance in semiconductor / granular film heterostructures with cobalt nanoparticles, Phys. Rev. B 80(2009) 184423

DOI: 10.1103/physrevb.80.184423

Google Scholar

[6] G. Xiao and C. L. Chien, Temperature dependence of spontaneous magnetization of ultrafine Fe particles in Fe‐SiO2 granular solids, J.Appl.Phys. 61(1987)3308

DOI: 10.1063/1.338891

Google Scholar

[7] J. Q. Wang and G. Xiao, Transition-metal granular solids: Microstructure, magnetic properties, and giant magnetoresistance, Phys.Rev.B 49(1994)3982

DOI: 10.1103/physrevb.49.3982

Google Scholar

[8] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition, J.Appl.Phys. 98 (2005) 013505

DOI: 10.1063/1.1940137

Google Scholar

[9] Tauc J and Menth A, States in the gap, J Non-crystal Solids 8 (1972) 569

Google Scholar

[10] F. Urbach, the long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys Rev. 92 (1953) 1324

DOI: 10.1103/physrev.92.1324

Google Scholar