Theoretical Study on Crystal Structure and Hydrogen Storage Properties of Sodium Hydride

Article Preview

Abstract:

In this paper, the crystal structure and hydrogen storage properties of the sodium hydride at different x value (NaHxD1-x, NaHxT1-x, NaDxT1-x; x=0, 0.25, 0.5, 0.75, 1.0) are investigated by using density functional theory within the generalized gradient approximation (GGA). The calculated results of NaH (D, T) are in good agreement with the other theoretical results. It has been found that, densities decreased with the increase of x value, while lattice parameters stay constant. The hydrogen storage properties of sodium hydride were predicted. The density-value x (ρ-x) relationship, the variations of the hydrogen storage properties with different crystal structure were obtained systematically.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1348-1351

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Billur Sakintuna, Farida Lamari-Darkrim and Michael Hirscher, International Journal of Hydrogen Energy. 32(9) (2007) 1121-1140.

Google Scholar

[2] Shin-ichi Orimo, Yuko Nakamori, Jennifer R. Eliseo, et al, Chem. Rev. 107(10) (2007)4111-4132.

Google Scholar

[3] Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G, Catal Today. 120 (2007) 246-256.

Google Scholar

[4] Lohstroh W, Fichtner M, Breitung W, Int J Hydrogen Energy. 34 (2009) 59815985.

Google Scholar

[5] Graetz J,Chem. Soc.Rev. 38 (2009) 73-82.

Google Scholar

[6] Schlapbach L, Zuttel A, Nature. 414 (2001)353-358.

Google Scholar

[7] Bloch J, Mintz MH, J Alloys Compd. 253 (1997) 529-541.

Google Scholar

[8] Annemieke W C and Carlos otero Areán, Chemical Communications. 6 (2008) 668-681.

Google Scholar

[9] Lyci George and Surendra k. Saxena, International Journal of Hydrogen Energy. 35(11) (2010) 5454-5470.

Google Scholar

[10] J.D. Pandey, J.inorg. nucl. Chem. 40 (1978) 1184-1185.

Google Scholar

[11] Lei Jiehong, Duan Hao and Xing Pifeng, Phys. Scr. 82(4) ( 2010) 5607-5610.

Google Scholar

[12] Ulrich Magg and Harold Jones, Chemical Physics Letters. 146(5) (1988) 415-418.

Google Scholar

[13] H Smithson, C A Marianetti, D Morganm, et al, Phys.Rev.B. 66(14) (2002) 4107-4116.

Google Scholar

[14] Arthur G Maki and Wm Bruce Olson, J. Chem. Phys. 90(12) (1989) 6887-6892.

Google Scholar

[15] R.C. Bowman, JR, J.phys. Chem.Solids.34 (1973) 1754-1756.

Google Scholar

[16] Payne M C, Teter M P, Allen D C, et al, Rev. Mod. Phys. 64 (1992) 1045-1077.

Google Scholar

[17] Guo Yundong, Cheng Xinlu, Zhou Liping, et al, Physica B. 373 (2006) 334-340.

Google Scholar

[18] Hammer B, Hansen L B and Norskov J K, Phys. Rev.B. 59 (1999) 7413-7421.

Google Scholar

[19] Vanderbilt D, Phys. Rev. B. 41 (1990) 7892-7895.

Google Scholar

[20] Perdew J P, Burke K and Ernzerhof M, Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar