Effect of Substrate Temperature on Properties of CuInSe2 Thin Films Deposited by Magnetron Sputtering

Article Preview

Abstract:

CuInSe2 thin films were successfully deposited by magnetron RF-sputtering at different substrates temperature (100°C, 200°C, 300°C, 400°C, and 500°C). Effect of substrate temperature on these films crystallization, morphologies, and electrical properties were investigated. Results showed that increase of substrate temperature is in favor to be constituted in a chalcopyrite phase with a preferential orientation of (112), (211) and (312). The morphology images implied the film deposited at 200 oC had smoother surface than others. Furthermore, it was indicated that substrates temperature of 200°C had the best electrical and optical properties among these samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2131-2135

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Chichibu, T. Mizutani, and K. Murakami: J. Appl. Phys. Vol. 83 (1998), p.3678

Google Scholar

[2] R.R. Arya, R. Beaulieu, M. Kwietniak, J. Loferski, and L.L. Kazmerski: J. Vac. Sci. Technol. Vol. 8 (1983), p.471

Google Scholar

[3] N. Romeo, V.Canevari, G. Sberveglieri, A. Bosio, L. Zanotti: Solar Cells Vol. 22 (1987), p.23

Google Scholar

[4] J.A. Thornton, T.C. Lommasson, H. Talieh, B.H. Tseng: Solar Cells Vol. 24 (1988) , p.1

Google Scholar

[5] L.L. Kazmerski, M.S. Ayyagari, F.R. White, G.A. Sanborn: J. Vac. Sci. Technol. Vol. 13 (1976), p.139

Google Scholar

[6] V.K. Gandotra, K.V. Ferdinand, C. Jagadish, A. Kumar, P.C. Mathur: Phys. Stat. Sol. A. Vol. 98 (1986), p.595

Google Scholar

[7] M.M. EL-Nahas, H.S. Soliman, D.A. Hendi, K.H.A. Mady: J. Mater. Sci. Vol. 27 (1992), p.1484

Google Scholar

[8] M.V. Yakushev, A.V. Mudryi, V.F. Gremenok, V.B. Zalesski, P.I. Romanov, Y.V. Feofanov, R.W. Martin, R.D. Tomlinson: J. Phys. Chem. Sol. Vol. 64 (2003), p. (2005)

DOI: 10.1016/s0022-3697(03)00089-1

Google Scholar

[9] P. Malar, S. Kasiviswanathan: Solar Energy Mater. Sol. Cells Vol. 85 (2005), p.521

Google Scholar

[10] H. Sakata, N. Nakao: Phys. Stat. Sol. A Vol. 161 (1997), p.379

Google Scholar

[11] A. Drici, M. Mekhnache, A. Bouraoui, A. Kachouane, J.C. Bernède, A. Amara, M. Guerioune: Mater. Chem. Phys. Vol. 110 (2008), p.76

DOI: 10.1016/j.matchemphys.2007.12.029

Google Scholar

[12] S.P. Grindle, A.H. Clark, S. Rezaie-Serej, E. Falconer, J. McNeily, L.L. Kazmerski: J. Appl. Phys. Vol. 51 (1980), p.5464

DOI: 10.1063/1.327504

Google Scholar

[13] Y.D. Tembhurkar, J.P. Hirde: Thin Solid Films Vol. 215 (1992), p.65

Google Scholar

[14] R.N. Bhattacharya, K. Rajeshwar: Solar Cells Vol.16 (1986), p.237

Google Scholar

[15] C. GuilleHn, J. Herrero: J. Appl. Phys. Vol. 71 (1992), p.5479

Google Scholar

[16] J.M. Merino, M.D. Michiel, M. León: J. Phys. Chem. Sol. Vol. 64 (2003), p.1649

Google Scholar

[17] Dhananjay, J. Nagaraju, S.B. Krupanidhi: J. Phys. Chem. Sol. Vol. 67 (2006), p.1636

Google Scholar

[18] Z. Li, H. Qing, J.W. Long, L.F. Fang, L.C. Jian, S. Yun: Solar Energy Mater. Sol. Cells Vol. 93 (2009), p.114

Google Scholar

[19] Dhananjay, J. Nagaraju, S.B. Krupanidhi: Mat. Sci. Eng. B Vol. 127 (2006), p.12

Google Scholar

[20] J.J. M. Binsma, L.J. Giling, J. Bloem: Phys. Star. Sol. A Vol. 63 (1981), p.595

Google Scholar

[21] J.R. Tuttle, D.S. Albin, R. Noufi: Solar Cells Vol. 27 (1989), p.231

Google Scholar

[22] L.C. Yang, H.Z. Xiao, A. Rockett, W.N. Shafarman, R.W. Birkmire: Solar Energy Mater. Sol. Cells Vol. 36 (1995), p.445

Google Scholar

[23] C. Guillen, J. Herrero: Solar Energy Mater. Sol. Cells Vol. 43 (1996), p.47

Google Scholar

[24] T. Sakurai, H. Uehigashi, M.M. Islam, T. Miyazaki, S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, S. Niki, K. Akimoto: Thin Solid Films Vol. 517 (2009), p.2403

DOI: 10.1016/j.tsf.2008.11.051

Google Scholar