In Vitro Bioactivity Test of FA Added with TiO2 of Different Phases Coated on Ti-6Al-4V Substrates by Nd-YAG Laser Cladding Process

Article Preview

Abstract:

Hydroxyapatite (HA) is a frequently used bioactive coating material. However, when HA coating is soaked in the simulated body fluid (SBF), it is usually detached from substrate material due to its high dissolution rate in the solution. Recently, it is found that Fluorapatite (FA) has a better anti-dissolution ability than HA. In this study, Fluorapatite was mixed with TiO2 powder (either Anatase phase (A) or Rutile phase (R)) as a coating material precursor, and then be deposited on Ti-6Al-4V substrate to form the coating layer by using Nd-YAG laser cladding process. After soaking in SBF for various days, it is observed that dense ball-like apatite grew faster on the surface of the FA+R coating layer than that on the surface of the FA+A specimens. The corresponding Ca/P ratios of FA+R specimens also dropped faster than FA+A ones.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2225-2229

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Cheng, S. Zhang, W. Weng, Surf. Coat. Technol., pp.237-241, 2005.

Google Scholar

[2] G.L. De lange, K. Donath, Biomaterials, pp.121-125, 1989.

Google Scholar

[3] H.U. Lee, Y.S. Jeong, S.Y. Park, S.Y. Jeong, H.G. Kim, Curr. Appl. Phys., pp.528-533, 2009.

Google Scholar

[4] C. Knabe, G. Berger, R. Gildenhaar, C. R. Howlett, B. Markovic, Biomaterials, pp.335-344, 2004.

Google Scholar

[5] S. Zhang, X. Zeng, Y. Wang, K. Cheng, W. Weng, Surf. Coat. Technol., pp.6350-6354, 2006.

Google Scholar

[6] X. Zheng, M. Huang, C. Ding, Biomaterials, pp.841-849, 2000.

Google Scholar

[7] S. Overgaard, M. Lind, H. Grundvig, C. Biinger Clin. Orthop. Rel. Res., 336, pp.286-296, 1997.

Google Scholar

[8] H. Ji, P.M. Marquis, Biomaterials, pp.64-68, 1993.

Google Scholar

[9] J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot, J. Mater. Sci. Mater. Med., pp.83-85, 1993.

Google Scholar

[10] N. Ignjatovie, S. Tomic, M. Dakic, M. Miljkovie, M. Plavsic, Biomaterials, pp.809-816, 1999.

Google Scholar

[11] K. A. Bhadang, K.A. Karlis A. Gross, Biomaterials, pp.4935-4945, 2004.

Google Scholar

[12] M.H. Fathi, E. Mohammadi Zahrani, A. Zomorodian, Mater. Lett., pp.1195-1198, 2009.

Google Scholar

[13] X. Liu, X. Zhao, R.K.Y. Fu, J.P.Y. Ho, C. Ding, Paul K. Chu, Biomaterials, pp.6143-6150, 2005.

Google Scholar

[14] W.H. Song, Y.K. Jun, Yong Han, S.H. Hong, Biomaterials, pp.3341-3349, 2004.

Google Scholar

[15] S. H. Lee, H. W. Kim, E. J. Lee, L. H. Li, H. E. Kim, Biomaterials Appl., pp.195-208, 2006.

Google Scholar

[16] P. Li, I. Kangasniemi, K. de Groot, and T. Kokubo, J. Am. Ceram. Soc., pp.1307-1312, 1994.

Google Scholar

[17] E. Milella, F. Cosentino, A. Licciulli, C. Massaro, Biomaterials, pp.1425-1431, 2001.

Google Scholar

[18] P. A. Ramires, A. Romito, F. Cosentino, E. Milella, Biomaterials, pp.1467-1474, 2001.

Google Scholar

[19] E.Je. Lee, S.H. Lee, H.W. Kim, Y.M. Kong, Hyoun-Ee Kim, Biomaterials, pp.3843-3851, 2005.

Google Scholar

[20] Y. W. Gu, K. A. Khor, P. Cheang, Biomaterials, pp.2695-2705, 2003.

Google Scholar

[21] J.Y. Han, Z.T. Yu, L. Zhou, Appl. Surf. Sci., pp.455-458, 2008.

Google Scholar

[22] Z. Yang, S. Si, X. Zeng, C. Zhang, Hongjuan Dai, Acta Biomaterialia, pp.560-568, 2008.

Google Scholar

[23] T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials , pp.2161-2175, 2003.

Google Scholar

[24] R.K. Rude, H.E. Gruber, J. Nutr. Biochem., pp.710-716, 2004.

Google Scholar