Influence of Substrate Temperature on the Structural, Electrical and Optical Properties of Al-Doped ZnO Films by RF Magnetron Sputtering

Article Preview

Abstract:

Transparent conducting aluminum-doped zinc oxide (AZO) films have been prepared on soda-lime glass substrates by radio frequency magnetron sputtering using a high density ceramic target at different substrate temperatures. The structural, morphology, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, scanning electron microscope, Hall measurement, and optical transmission spectroscopy, and which were strongly influenced by substrate temperatures. Films with better texture, higher transmission, lower resistivity and larger carrier concentration were obtained for the samples fabricated at higher substrate temperature. The AZO film with the lowest resistivity of 4.63×10−4 Ω.cm and an average optical transmission of 92% in the visible range was deposited on the substrate heated at 450 °C. The optical bandgap depends on the deposition condition, and was in the range of 3.35~3.59 eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2308-2313

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Carreras, A. Antony, R. Roldán, O. Nos, P. A. Frigeri, J. M. Asensi, and J. Bertomeu, Phys. Status Solidi C Vol. 7 (2010), p.953.

DOI: 10.1002/pssc.200982852

Google Scholar

[2] M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein, and H. Wenckstern, Phys. Status Solidi A Vol. 207(2010), p.1437.

DOI: 10.1002/pssa.201090013

Google Scholar

[3] W. Dewald, V. Sittinger, W. Werner, C. Jacobs, B. Szyszka, Thin Solid Films Vol. 518 (2009), p.1085.

DOI: 10.1016/j.tsf.2009.04.068

Google Scholar

[4] G. J. Fang, D. Li, B.-L. Yao,Thin Solid Films Vol.418 (2002) , p.156.

Google Scholar

[5] W.W. Wang, X.G. Diao, Z. Wang, M. Yang, T. M. Wang, Z. Wu Thi, Thin Solid Films Vol. 491 (2005), p.54.

Google Scholar

[6] T. Minami, H. Sonohara, S. Takata and H. Sato, J. J. Appl. Phys. Vol. 33 (1994), p.L743.

Google Scholar

[7] W. Tang, D.C. Cameron, Thin Solid Films 238 (1994) 83.

Google Scholar

[8] S. Amirhaghi, V. Craciun, D. Craciun, J. Elders and I. W. Boyd, Microelectron. Eng. Vol. 25(1994), p.321.

Google Scholar

[9] T. Yamamoto, T. Shiosaki, and A. Kawabata, Appl. Phys., Vol. 51(1980), p.3113.

Google Scholar

[10] T. Minami, H. Nanto, S. Takata, Thin Solid Films, Vol. 124(1985), p.43.

Google Scholar

[11] W. F. Yang, Z. G. Liu, D.-L. Peng, F. Zhang, H.L. Huang, Y. N. Xie, Z. G. Wu, Appl. Surf. Sci. Vol. 255 (2009), p.5669.

Google Scholar

[12] O. Kluth, G. Schäpe, J. Hüpkes, C. Agashe, J. Müller, B. Rec, Thin Solid Films Vol. 442 (2003), p.80.

Google Scholar

[13] Y. Igasaki, H. Kanma, Appl. Surf. Sci. Vol. 169-170 (2001), p.508.

Google Scholar

[14] W.-J. Jeong, G.-C. Park, Sol. Energy Mater. Sol. Cells Vol. 65 (2001), p.37.

Google Scholar

[15] B.-Y. Oh, M.-C. Jeong, D.-S. Kim, W. Lee, J.-M. Myoung, J. Cryst. Growth. Vol.281(2005) , p.475.

Google Scholar

[16] W. Dewald, V. Sittinger, W. Werner, C. Jacobs, B. Szyszka, Thin Solid Films Vol. 518(2009), p.1085.

DOI: 10.1016/j.tsf.2009.04.068

Google Scholar

[17] X.-J. Wang, Q.-S. Lei, W. Xu, W.-L. Zhou, J. Yu, Mater. Lett. Vol. 63 (2009), p.1371.

Google Scholar

[18] C. Koidis, S. Logothetidis, S. Kassavetis, A. Laskarakis, N. A. Hastas, O. Valassiades, Phys. Status Solidi A Vol. 207 (2010), p.1581.

DOI: 10.1002/pssa.200983767

Google Scholar

[19] W. Li, Y. Sun, Y. X. Wang, H. K. Cai, F. F. Liu, Q. H, Sol. Energy Mater. Sol. Cells Vol. 91 (2007), p.659.

Google Scholar

[20] M. Vinnichenko, R. Gago, S. Cornelius, N. Shevchenko, A. Rogozin, A. Kolitsch, F. Munnik, W. Möller, Appl. Phys. Lett. Vol. 96 (2010), p.141907

DOI: 10.1063/1.3385024

Google Scholar

[21] A. I. Ali, C. H. Kim, J. H. Cho, B. G. Kim, J. Korean Phys. Soc. Vol. 49 (2006), p. S652.

Google Scholar

[22] Y. H. Sun, W. H. Xiong, C. H. Li, Trans. Nonferrous Met. Soc. China, Vol.0 (2010), p.624.

Google Scholar

[23] K. H. Kim, K.C. Park, D. Y. Ma, J. Appl. Phys. Vol.81 (1997), p.7764.

Google Scholar

[24] L. Chen, X. F. Bi, Vacuum Vol. 82 (2008), p.1216.

Google Scholar

[25] E. Burstein, Phys. Rev. Vol. 93 (1954), p.632

Google Scholar

[26] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, Y. C. Kim, J. Cryst. Growth Vol. 277 (2005), p.284.

Google Scholar

[27] E. A. Davis, N. F. Mott, Phil. Mag. Vol.22 (1970), p.903.

Google Scholar

[28] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, S. J. Chua, J. Appl. Phys. Vol. 98 (2005), p.013505.

Google Scholar

[29] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, B. H. Zhao, J. Cryst. Growth Vol. 304 (2007), p.64.

Google Scholar