Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Quality through a Novel Sulfuration Method

Article Preview

Abstract:

The absence of stable oxide/GaAs interface greatly holds back the step of GaAs-based MOSFETs fabrication. In this letter, we report on the chemical passivation of n-type GaAs surface by introducing a new sulfuration method. X-ray photon-electron spectroscopy (XPS) analyses indicate that most GaAs native oxides and elemental arsenic (As) can be more effectively removed by treating the GaAs surface in CH3CSNH2 solution compared to the traditional (NH4)2S solution. Capacitance-Voltage characteristics of the CH3CSNH2 treated MOS capacitors also presents reduced interfacial layer and equivalent oxide thickness which are well consisted with the conclusion obtained by XPS.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2327-2331

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Annelies delabie, David P. Brunco 2008 Journal of electrochemical society. 155 H937-H944

Google Scholar

[2] Hong-Liang Lu, Liang Sun, Shi-Jin Ding, Min Xu, David Wei Zhang and Li-Kang Wang 2006 Applied physics letters. 89 152910

Google Scholar

[3] P. T. Chen, Y. Sun, E.Kim, P. C. Mclntyre and W. Tsai 2008 Journal of applied physics. 103 034106

Google Scholar

[4] Massood Tabib-Azar, Soon Kang, Andrew N. Maclnnes 1993 Appl. Phys. Lett. 63 625

Google Scholar

[5] H. C. Lin, G. D.Wilk and P. D. Ye 2005 Applied physics letters. 87 182904

Google Scholar

[6] Yi Xuan, Hung-Chun Lin and P. D. Ye 2007 IEEE Transaction On Electron Devices. 54 1811

Google Scholar

[7] Justin C. Hackley, J. Derek Derek Demaree, Teodosia Gougousi 2008 Applied Physics Letters. 92 162902

Google Scholar

[8] M. Hong, C. T. Liu, H. Reese, and J. Kwo 1999 Wiley Encyclopedia of Electrical and Electronics Engineering, edited by J. G. Webster (Wiley, New York). 19 87

DOI: 10.1002/047134608x.w3226

Google Scholar

[9] W. E. Spicer, Z. Liliental–Weber, E. Weber, N. Newman 1988 J. Vac. Sci.Technol. B6 1245

Google Scholar

[10] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, and V. Torkanov 2006 Appl. Phys. Lett. 88 022106.

Google Scholar

[11] Yang J.K., Kang M.G. and Park H.H. J. 2004 Appl. Phys. 96 4811

Google Scholar

[12] H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee 2006 Appl.Phys. Lett. 89 222903

Google Scholar

[13] Kim H.S et al 2006 Appl. Phys. Lett. 89 222903

Google Scholar

[14] F. S. Aguirre-Tostado, M. Milojevic, K. J. Choi 2008 APPLIED PHYSICS LETTERS 93 061907

Google Scholar

[15] T. Ohno, 1991 surf. Sci. 225 229.

Google Scholar

[16] A. C. Ferraz, G. P. Srivastava, 1997 Surf. Sci. 377 121.

Google Scholar

[17] D.N. Gnoth, D. Wolfframm, A. Patchett, and S. Hohenecker, 1998 Applied Surface Science 123 /124 120

DOI: 10.1016/s0169-4332(97)00424-8

Google Scholar

[18] E. D. Lu, F. P. Zhang, S. H. Xu 1996 Appl. Phys. Lett. 69 2282

Google Scholar

[19] Yu. V. Medvedev 1994 Appl. Phys. Lett. 64, 3452

Google Scholar

[20] E.D.Lu, S.H.Xu, P. S.Xu 1996 Journal of Electron Spectroscopy and Related Phenomena 80 181

Google Scholar

[21] SHI Yu, Sun Qing-Qing, Dong Lin, ZHANG wei 2008 CHIN. PHYS. LETT. Vol. 25. 3954.

Google Scholar

[22] J. K. Kang, M. G. Kang, and H. H. Park 2002 Vacuum 67, 161.

Google Scholar

[23] Ha J S, Park S J, Kim S B, and Lee E H 1995 J. Vac. Sci. Technol. A 13 646.

Google Scholar

[24] Domingo I., Garcia-Gutierrez, and Davood Shahrjerdi, J. Vac. Sci, Technol. B27 2390

Google Scholar

[25] Frank M M et al 2005 Appl. Phys. Lett. 86 152904.

Google Scholar

[26] Hackley J C, Demaree J D and Gougousl T 2008 Appl.Phys. Lett. 92 162902.

Google Scholar

[27] Goutam Kumar Dalapati, Yi Tong, Wei-Yip Loh 2007 IEEE Transaction on Electron Devices, 54, 1831

Google Scholar