[1]
H.C. Kou, D. Landolt, Galvanostatic transient study of anodic film formation on iron in concentrated chloride media, Corros. Sci. 16 (1976) 915-922.
DOI: 10.1016/s0010-938x(76)80011-x
Google Scholar
[2]
R.D. Grimm, D. Landolt, Salt films formed during mass transport controlled dissolution of iron-chromium alloys in concentrated chloride media, Corros. Sci. 36 (1994) 1847-1868.
DOI: 10.1016/0010-938x(94)90023-x
Google Scholar
[3]
H.S. Isaaca, J.H. Cho, M.L. Rivers, S.R. Sutton, In situ X-Ray microprobe study of salt layers during anodic dissolution of stainless steel in chloride solution, J Electrochem. Soc. 142 (1995) 1111-1118.
DOI: 10.1149/1.2044138
Google Scholar
[4]
R.D. Grimm, A. C. West and D. Landolt, AC impedance study of anodically formed salt films on iron in chloride solutions, J Electrochem. Soc. 139 (1992) 1622-1629.
DOI: 10.1149/1.2069467
Google Scholar
[5]
J.R. Park, D.D. Macdanald, Impedance studies of the growth of porous magnetite films on carbon steel in high temperature aqueous systems, Corros. Sci. 23 (1983) 295-315.
DOI: 10.1016/0010-938x(83)90063-x
Google Scholar
[6]
L.K. Gatzky, R.H. Hausler, "A novel correlation of tubing corrosion rates and gas production rates", in R.H. Hausler, H.P. Godard (Eds). Advanced in CO2 corrosion, Vol. 1, pp.87-90.
Google Scholar
[7]
L.G.S. Gray, B.G. Anderson, M.J. Danysh,et al. Mechanism of carbon steel corrosion in brines containing dissolved carbon dioxide at pH4, Corrosion/89, Paper No.464. (Houston, TX: NACE. International, 1989).
Google Scholar
[8]
M. Stern, The electrochemical behavior, including hydrogen over-voltage, of iron in acid environments, J.Electrochem.Soc. 102 (1955) 609-616.
DOI: 10.1149/1.2429923
Google Scholar
[9]
G. Schmitt, B. Rothman, "Studies on the Corrosion Mechanism of Unalloyed Steel in oxygen-tree carbon dioxide solutions, part II. kinetics of iron dissolution in: R.H. Hausler, H. P. Giddard (Eds), Advances in CO2 Corrosion, Vol. 1, pp.163-172.
Google Scholar
[10]
C.N. Cao, J.Q. Zhang, An introduction to electrochemical impedance spectroscopy. Beijing: Science press, 2002.
Google Scholar
[11]
Srdjan Nesic, Kun-Lin John Lee and Vukan Ruzic, The effect on CO2 corrosion of mild steel, Corrosion/2002, Paper No.02237. (Houston, TX: NACE. International, 2002).
Google Scholar
[12]
C.N. Cao, Corrosion electrochemistry. Beijing: Chemical industry press 1994.
Google Scholar
[13]
F.J. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings, Appl. Electrochem. 25 (1995) 187-202.
DOI: 10.1007/bf00262955
Google Scholar
[14]
I. Frateur, C. Deslouis, M.E. Orazem, B. Tribollet, Modeling of the cast iron/drinking water system by electrochemical impedance spectroscopy, Electrochem. Acta 44 (1999) 4345-4356.
DOI: 10.1016/s0013-4686(99)00150-4
Google Scholar
[15]
K. Juttner, W.J. Lorenz, M.W. Kendig, F.J. Mansfeld, Electrochemical Impedance Spectroscopy on 3-D Inhomogeneous Surfaces, J. Electrochem. Soc. 135 (1988) 332-339.
DOI: 10.1149/1.2095610
Google Scholar
[16]
M.C. Li, C.L. Zeng, H.C. Lin, C.N. Cao, Corrosion behavior for 316 stailess steel in dilute hydrochloric acid solutions aerated with hydrogen gas, Acta Metallurgica Sinica 38 (2002) 1287-1291.
Google Scholar