The Sonochemical Fabrication for the CaCO3 Nanocrystals with Different Morphologies

Article Preview

Abstract:

We have used the sonochemical approach to synthesize single crystals CaCO3 nanocrystals with various anisotropic shapes of such as, nanowires, nanosheets and unusually obtained nanoplates without using any template at room temperature. The complex interplay between crystallization processes and self-assembly resulting from spatial constrains has been investigated through studying the structural evolution of metastable intermediates synthesized. The impurity inducing crystallization has been proposed for a reasonable understanding of the novel crystallization pathway under the condition of sonication. Moreover, this approach is suitable to the anisotropic single crystals synthesis of other alkaline earth carbonates such as SrCO3 and BaCO3. It also gives a new demonstration of sonochemical effects on the crystallization and assembly of block building in the mesoscale.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1560-1563

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Lahav, L. Leiserowitz, Chem. Eng. Sci. 56, (2001), pp.2245-2253.

Google Scholar

[2] L. A. Estroff, A. D. Hamilton, Chem. Mater. 13, (2001), P. 3227-3235.

Google Scholar

[3] H. Cölfen, S. Mann, Angew. Chem., Int. Ed. 42, (2003), pp.2350-2365.

Google Scholar

[4] F. C. Meldrum, Int. Mater. Re. V. 48, (2003), pp.187-224.

Google Scholar

[5] S. H. Yu, H. Cölfen, J. Mater. Chem. 14, (2004), pp.2124-2147.

Google Scholar

[6] a) K. S. Suslick, L. A. Crum, Sonochemistry and Sonoluminescence in Encyclopedia of Acoustics, Wiley-Interscience, New York, 1997; b) T. J. Mason, J. P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood, Chichester, UK (1988).

DOI: 10.1002/bbpc.19890931025

Google Scholar

[7] F. R. Young, CaVitation; McGraw-Hill: New York, (1989).

Google Scholar

[8] Graham Ruecroft, David Hipkiss, Tuan Ly, Neil Maxted, and Peter W. Cains, Organic Process Research & Development 9, (2005), pp.923-932.

DOI: 10.1021/op050109x

Google Scholar

[9] A. Gedanken, X. H. Tang, Y. Q. Wang, N. Perkas, Y. Koltypin, M. V. Landau, L. Vradman, M. Herskowitz, Chem. Eur. J. 7, (2001), pp.4546-4552.

DOI: 10.1002/1521-3765(20011105)7:21<4546::aid-chem4546>3.0.co;2-l

Google Scholar

[10] Y. Q. Wang, L. X. Yin, A. Gedanken, Ultroson. Sonochem. 9, (2002), pp.285-29.

Google Scholar

[11] Y. C. Zhu, H. L. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken, Chem. Commun. (2001), pp.2616-2617.

DOI: 10.1039/b108968b

Google Scholar

[12] G. Falini, S. Albeck, S. Weiner, and L. Addadi, Science 271, (1996), p.67.

Google Scholar

[13] N. Koga, Y. Nakagoe, H. Tanaka, Thermochim. Acta 318, (1998), p.239.

Google Scholar

[14] L. Addadi, S. Raz, S. Weiner, Adv. Mater. 15, (2003), p.959.

Google Scholar

[15] J. Tang, A. P. Alivisatos, Nano Lett. 6, (2006), pp.2701-2706.

Google Scholar

[16] K Y. ojima, N. Endo, T. Yasue, Y. Arai. 1, J. Ceram. Soc. Ipn. Int. Ed. 103, (1995), p.1268.

Google Scholar

[17] W.-S. Wang, L. Zhen, C.-Y. Xu, L. Yang, W.-Z. Shao, Cryst. Growth Des.; 8; (2008), pp.1734-1740.

Google Scholar

[18] L. Addadi, D. Joester, F. Nudelman, S. Weiner, Chem. Eur. J. 12, (2006), p.980.

Google Scholar

[19] R. Hiremath, J.A. Basile, S. W. Varney, A. Swift, J. A. Chem. Soc. 127, (2005), p.18321.

Google Scholar

[20] A. W. Xu, Y. R. Ma, H. Cölfen, J. Mater. Chem. 17, (2007), p.415.

Google Scholar

[21] A. Kotachi, T. Miura, H. Imai, Cryst. Growth Des. 6, (2006), p.1636.

Google Scholar

[22] K. Naka, D.-K. Keum, T. Y. anaka, Y. Chujo, Chem. Commun. (2000), p.1537.

Google Scholar