A General Sonochemical Approach to Rapid Synthesis of 1D Single-Crystalline MSn(OH)6 (M=Ba, Ca, Sr) Nanostructures

Article Preview

Abstract:

A general sonochemical approach that allows for the facile, rapid synthesis of MSn(OH)6 (M=Ba, Ca, Sr) one-dimension (1D) nanostructures has been developed. The resulting CaSn(OH)6 products possessed a nanotubular structure, while SrSn(OH)6 and BaSn(OH)6 showed nanowire-like structures. The as-synthesized MSn(OH)6 products were characterized by XRD, SEM and TEM techniques. The BaSn(OH)6 nanowires, CaSn(OH)6 nanotubes, and SrSn(OH)6 nanowires share different growth mechanisms because they take different crystal structures. However, we found that for all the three materials, both the ultrasound irradiation and the presence of Na2CO3 in the synthetic procedure had an impact on the homogeneous nucleation and fast growth of 1D MSn(OH)6 nanostructures. This approach represents a successful example for the fast construction of inorganic innovative nanostructures in the absence of any surfactants.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1554-1559

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56.

Google Scholar

[2] X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, Science 303 (2004) 1348.

Google Scholar

[3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (2003) 353.

Google Scholar

[4] J. Goldberger, T. He, Y. Zhang, S. Lee, H. Yan, H. Choi, P. Yang, Nature 431 (2004) 672.

Google Scholar

[5] M. Law, H. Kind, B. Messer, F. Kim, P. D. Yang, Angew. Chem. Int. Ed. 41 (2002) 2405.

Google Scholar

[6] R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, C. M. Lieber, Nature 434 (2005) 1085.

Google Scholar

[7] E. Stern, J. G. Klemic, D. A. Toutenberg, P. N. Wyrembak, D. B. Tumer-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, M. A. Reed, Nature 445 (2007) 519.

DOI: 10.1038/nature05498

Google Scholar

[8] J. Liu, Y. C. Son, J. Cai, X. Shen, S. L. Suib, M. Aindow, Chem. Mater 16 (2004) 276.

Google Scholar

[9] X. Wang, Y. Li, J. Am. Chem. Soc. 124 (2002) 2880.

Google Scholar

[10] J. Kim, J. U. Bae, W. A. Anderson, H. M. Kim, K. B. Kim, J. Mater. Res. 21 (2006) 2936.

Google Scholar

[11] J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, C. Z. Li, D. Golberg, Adv. Mater. 18 (2006) 1852.

Google Scholar

[12] M. Ashokkumar, F. Grieser, Rev. Chem. Eng. 15 (1999) 41.

Google Scholar

[13] T. Gao, T. H. Wang, Chem. Mater. 17 (2005) 887.

Google Scholar

[14] K. Barbour, M. Ashokkumar, R. A. Caruso, F. Grieser, J. Phys. Chem. B 103 (1999) 9231.

Google Scholar

[15] H. Wakayama, S. R. Hall, Y. Fukushima, S. Mann, Ind. Eng. Chem. Res. 45 (2006) 3332.

Google Scholar

[16] D. P. Grigor'ev, Ontogeny of Minerals; Israel Program for Scientific Translations: Jerusalem, 1965.

Google Scholar

[17] Z. L. Wang, J. Phys. Chem. B 104 (2000) 1153.

Google Scholar

[18] J, Tang, A, P, Alivisatos, Nano Lett. 6 (2006) 2701.

Google Scholar

[19] Z. Jia, Y. Tang, L. Luo, B. Li, Z. Chen, J. Wang, H. Zheng, J. Colloid Interface Sci. 334 (2009) 202.

Google Scholar

[20] X, Hu, Y, Tang, T, Xiao, J, Jiang, Z, Jia, D, Li, B, Li, L, Luo, J. Phys. Chem. C 114 (2010) 947.

Google Scholar

[21] M. D. Wei, H. Sugihara, I. Honma, M. Ichihara, H. S. Zhou, Adv. Mater. 17 (2005) 2964.

Google Scholar

[22] L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer, S. Banerjee, J. Am. Chem. Soc. 131 (2009) 8884.

Google Scholar

[23] G. L. Xiang, J. Zhuang, X. Wang, Inorg. Chem. 48 (2009) 10222.

Google Scholar