Structural and Optical Properties of Zn1-XCoXO Thin Films Fabricated by Laser Molecular Beam Epitaxy

Article Preview

Abstract:

Zn1-xCoxO thin films on sapphire (0001) substrates were synthesized by laser molecular beam epitaxy (LMBE) method at various temperatures under a work ambient pressure of 5.0 x 10-5 Pa condition. X-ray diffraction (XRD) spectra, UV–visible transmission spectra and X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra were employed to characterize the properties of samples. All samples were of wurtzite hexagonal structure with the preferential c-axis-orientation. Co2+ ions incorporated into ZnO lattice and substituted for Zn2+ ions. ZnLMM Auger spectrum implied Zn interstitials existed in sample. The optical transmission of all samples was relatively high in visible region. Two PL emission peaks located at 418 nm and 490 nm were assigned to the electron transition from the Zn interstitials to the top of the valence band and from the Zn interstitials to the Zn vacancies, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1958-1963

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ohno: Science vol. 281 (1998), p.951

Google Scholar

[2] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Guillen, B. Johansson and G. A. Gehring: Nat Mater vol. 2 (2003), p.673

Google Scholar

[3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science vol. 292 (2001), p.1897

DOI: 10.1126/science.1060367

Google Scholar

[4] Y. W. Heoa, D. P. Nortona, L. C. Tiena, Y. Kwona, B. S. Kangb, F. Renb, S. J. Peartona and J. R. LaRoche: Materials Science and Engineering vol. 47 (2004), p.1

Google Scholar

[5] T. Dietl, H. Ohno and F. Matsukuraf: Phys. Rev. B vol. 63 (2001), p.195205

Google Scholar

[6] K. Sato and H. Katayama-Yoshida: Physica B: Condensed Matter vol. 308-310 (2001), p.904

Google Scholar

[7] K. Sato and H. Katayama-Yoshida: physica status solidi (b) vol. 229 (2002), p.673

Google Scholar

[8] K. Sato and H. Katayama-Yoshida: Semicond. Sci. Technol. vol. 17 (2002), p.367

Google Scholar

[9] H. C. a. S. L. W. Abraham F. Jalbout: Appl. Phys. Lett. vol. 81 (2002), p.2217

Google Scholar

[10] Y. M. Cho, W. K. Choo, H. Kim, D. Kim and Y. E. Ihm: Appl. Phys. Lett. vol. 80 (2002), p.3358

Google Scholar

[11] X. M. Cheng and C. L. Chien: J. Appl. Phys. vol. 93 (2003), p.7876

Google Scholar

[12] C. Liu, F. Yun, B. Xiao, S.-J. Cho, Y. T. Moon, H. Morkoç, M. Abouzaid, R. Ruterana, K. M. Yu and W. Walukiewicz: J. Appl. Phys. vol. 97 (2005), p.126107

Google Scholar

[13] Z.-B. Gu, C.-S. Yuan, M.-H. Lu, J. Wang, D. Wu, S.-T. Zhang, S.-N. Zhu, Y.-Y. Zhu and Y.-F. Chen: J. Appl. Phys. vol. 98 (2005), p.053908

Google Scholar

[14] H.-J. Lee, S.-Y. Jeong, C. R. Cho and C. H. Park: Appl. Phys. Lett. vol. 81 (2002), p.4020

Google Scholar

[15] J. H. Park, M. G. Kim, H. M. Jang, S. Ryu and Y. M. Kim: Appl. Phys. Lett. vol. 84 (2004), p.1338

Google Scholar

[16] A. B. Pakhomov, B. K. Roberts, A. Tuan, V. Shutthanandan, D. McCready, S. Thevuthasan, S. A. Chambers and K. M. Krishnan: J. Appl. Phys. vol. 95 (2004), p.7393

DOI: 10.1063/1.1669224

Google Scholar

[17] A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar, M. H. Engehard, J. W. Rogers, Jr, K.Krihnan, D. R. Gamelin and S. A. Chambers: Phys. Re v. B vol. 70 (2004), p.054424

Google Scholar

[18] K. Ueda, H. Tabata and T. Kawai: Appl. Phys. Lett. vol. 79 (2001), p.988

Google Scholar

[19] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa and H. Koinuma: Appl. Phys. Lett. vol. 78 (2001), p.3824

DOI: 10.1063/1.1377856

Google Scholar

[20] S. W. Jung, S.-J. An, G.-C. Yi, C. U. Jung, S.-I. Lee and a. S. Cho: Appl. Phys. Lett. vol. 80 (2002), p.4561

Google Scholar

[21] A. C. Mofor, A. El-Shaer, A. Bakin, A. Waag, H. Ahlers, U. Siegner, S. Sievers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, S. Sorokin, S. Ivanov and J. Stoimenos: Appl. Phys. Lett. vol. 87 (2005), p.062501

DOI: 10.1063/1.2007864

Google Scholar

[22] W. T. Lim, K. R. Cho and C. H. Lee: Thin Solid Films vol. 348 (1999), p.56

Google Scholar

[23] M.K. Patra, K.Manzoor, M.Manoth, S.R. Vadera and N.Kumar: J Phys Chem Solids vol. 70 (2009), p.659

Google Scholar

[24] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby and S. I. Shah: Nanotechnology vol. 17 (2006), p.2675

Google Scholar

[25] S. K. H. M Naeem, Sabeen Sher Afgan and Abdul Rumaiz: J. Phys.: Condens. Matter vol. 20 (2008), p.255223

Google Scholar

[26] C. Wang, Z. Chen, H. Hu and D. Zhang: Physica B vol. 404 (2009), p.4075

Google Scholar

[27] X. Q. Wei, J. Z. Huang, M. Y. Zhang, Y. Dua and B. Y. Man: Materials Science and Engineering B vol. 166 (2010), p.141

Google Scholar

[28] H. X. Chen, J. J. Ding, X. G. Zhao and S. Y. Ma: Physica B vol. 405 (2010), p.1339

Google Scholar

[29] J. J. Ding, S. Y. Ma, H. X. Chen, X. F. Shi, T. T. Zhou and L. M. Mao: Physica B vol. 404 (2009), p.2439

Google Scholar

[30] H. Wei, Y. Wu, L. wu and C. Hu: Mater. Lett. vol. 59 (2005), p.271

Google Scholar

[31] L. J. Li, H. Deng, L. P. Dai, J. J. Chen, Q. L. Yuan and Y. Li: Mater. Res. Bull. vol. 43 (2008), p.1456

Google Scholar

[32] U. Pal, J. G. Serrano, N. Koshizaki, T. Sasaki and S. C: Materials Scienceand Engineering vol. 118 (2004), p.24

Google Scholar

[33] P.S.Xu, Y.M. Sun, C.S. Shi, F.Q.Xu and H.B. Pan: Nuclear Instruments and Methods in Physics Research B vol. 199 (2003), p.286

Google Scholar