Production of Size-Selected CuXSn1-X Nanoclusters

Article Preview

Abstract:

Composites of copper–tin (CuxSn1-x) nanoclusters were synthesized using the magnetron dc sputtering gas–condensation technique. Targets with controlled ratios of Sn to Cu were used to produce CuxSn1-x with different compositions. The effects on the nanocluster size and yield of the sputtering discharge power, inert gas flow rate, and aggregation length were investigated using a quadrupole mass filter. The sputtering discharge power was optimized to maximize the nanocluster yield. The results show that as the inert gas flow rate increases the nanocluster size increases and then decreases. These dependences could be understood in terms of the dominant nanocluster production mechanisms. This work demonstrates the ability of controlling the CuxSn1-x nanoclusters’ size and composition by optimizing the source operation conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

70-73

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Mazzoldi, G.W. Arnold, G. Battaglin, F. Gonella and R.F. Haglund, Jr., J. Nonlin. Opt. Phys. Mater. 5 (1996) 285. A. Martucci, M. De Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini and J. Fick, Appl. Phys. A 80 (2005) p.557.

DOI: 10.1007/s00339-004-2967-5

Google Scholar

[2] Y. Yamamoto and H. Hori, Rev. Adv. Mater. Sci. 12 (2006) p.23.

Google Scholar

[3] C. de Julián Fernández, C. Sangregorio, G. Mattei, G. De, A. Saber, S. Lo Russo, G. Battaglin, M. Catalano, E. Cattaruzza, F. Gonella, D. Gatteschi and P. Mazzoldi, Mater. Sci. Eng. C 15 (2001) p.59.

DOI: 10.1016/s0928-4931(01)00225-9

Google Scholar

[4] C. de Julián Fernández, G. Mattei, C. Maurizio, E. Cattaruzza, S. Padovani, G. Battaglin, F. Gonella, F. D'Acapito and P. Mazzoldi, J. Magn. Magn. Mater. 290-291 (2005) p.187.

DOI: 10.1016/j.jmmm.2004.11.178

Google Scholar

[5] V. Aroutiounian, International Journal of Hydrogen Energy 32 (2007) p.1145 – 1158.

Google Scholar

[6] J. Lee B. Moon, C. Shim, B. Kim, M. Lee, D. Lee, J. Lee, Sensors and Actuators B 108 (2005) p.84–88.

Google Scholar

[7] V. Gupra, S. Mozumdar, A. Chowdhuri, and K. Sreenivas, Pramana- J. Phys. 65 (2005) p.647 – 652.

Google Scholar

[8] F. Wang, M. Zhao, and X. Song, Journal of Alloys and Compounds 439 (2007) p.249–253

Google Scholar

[9] V. Kumar, S. Sen, K.P. Muthe, N.K. Gaur, S.K. Gupta, and J.V. Yakhmi, Sensors and Actuators B 138 (2009) p.587–590

DOI: 10.1016/j.snb.2009.02.053

Google Scholar

[10] X. Kong, Y. Li, Sens. Actuators B 105 (2005) p.449–453.

Google Scholar

[11] X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang, T. Wang, J. Phys. Chem. C 112 (2008) p.12157–12160.

Google Scholar

[12] Chowdhuri, V. Gupta, and K. Sreenivas, Sens. Actuators B 93 (2003) p.572 – 579.

Google Scholar

[13] A. I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. EL-Shaer, J. Appl. Phys. 107 (2010) p.034317.

DOI: 10.1063/1.3296131

Google Scholar

[14] M. Ohring, Materials science of thin films, 2nd edition, Academic Press 2002.

Google Scholar

[15] S. Pratontep, S. J. Carroll, C. Xirouchaki, M. Streun, and R. Palmer, Rev. Sci. Instrum. 76 (2005) p.045103.1.

Google Scholar

[16] A. N. Banerjee, R. Krishna, B. Das, Appl. Phys. A 90 (2008) p.299.

Google Scholar

[17] H. Haberland, Nanoclusters of Atoms and Molecules, Springer, Berlin, (1995)

Google Scholar

[18] S. Yamamuro, K. Sumiyama, W. Sakurai, and K. Suzuki, Cr cluster deposition by plasma-gas-condensation method. Supramolecular Science 5 (1998) p.239 – 245.

DOI: 10.1016/s0968-5677(98)00014-5

Google Scholar

[19] A. Ayesh et. al., to be published.

Google Scholar