Stable Antiferromagnetism of Orthorhombic BiCrO3 under Pressure: a Theoretical Study

Article Preview

Abstract:

The realization of ferromagnetism or ferrimagnetism in BiCrO3 is crucial for its potential application in magnetoelectronic devices. It is known from experiment that the antiferromagnetic monoclinic phase of BiCrO3 transits to orthorhombic as pressure beyond 1GPa. Here, we present a first-principles study of the magnetism of orthorhombic BiCrO3 under pressures up to 80GPa. We find that the energy difference between its ferromagnetic phase and the ground state of G-type anti-ferromagnetic phase becomes greater as the pressure increases, as well as the estimated magnetic transition temperature TN. This implies the difficulty of transforming BiCrO3 into ferromagnetism by external pressure, and thus other approaches (such as doping magnetic ions) are necessary to explore its potential application in magnetoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-248

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.A. Hill, Journal of Physical Chemistry B 104, 6694 (2000).

Google Scholar

[2] H. Schmid, Ferroelectrics 162, 317 (1994).

Google Scholar

[3] N.D. M. W. Erenstein, and J. F. Scott, Nature(London) 442, 759 (2006).

Google Scholar

[4] S. -W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

Google Scholar

[5] J.P. Velev, C. -G. Duan, J.D. Burton, A. Smogunov, M.K. Niranjan, E. Tosatti, S.S. Jaswal, and E.Y. Tsymbal, Physical Review Letters 9, 427 (2009).

DOI: 10.1021/nl803318d

Google Scholar

[6] C. -G. Duan, S.S. Jaswal, and E.Y. Tsymbal, Physical Review Letters 97, 047201 (2006).

Google Scholar

[7] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).

DOI: 10.1038/nature02018

Google Scholar

[8] T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature (London) 430, 541 (2004).

DOI: 10.1038/nature02728

Google Scholar

[9] C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, and G. Srinivasan, Joural of Applied Physics 103, 031101 (2008).

Google Scholar

[10] A.A. Belik and E. Takayama-Muromachi, Journal of Physics: Conference Series, 012035 (4 pp. ) (2009).

Google Scholar

[11] P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvag, Physical Review B 74, 224412 (2006).

Google Scholar

[12] A.G. Gavriliuk, V.V. Struzhkin, I.S. Lyubutin, S.G. Ovchinnikov, M.Y. Hu, and P. Chow, Phys. Rev. 77, 155112 (2008).

Google Scholar

[13] N.A. Hill, P. Battig, and C. Daul, Journal Physics Chem. B 106, 3383 (2002).

Google Scholar

[14] A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, and E. Takayama-Muromachi, Chem. Mater. 20, 3765 (2008).

DOI: 10.1021/cm800375d

Google Scholar

[15] A.A. Belik, Y. Hitoshi, H. Naohisa, O. Yasuo, and T. -M. Eiji, Inorg. Chem. 48, 1000 (2009).

Google Scholar

[16] G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999).

Google Scholar

[17] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

Google Scholar

[18] J. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

Google Scholar

[19] J. P. Perdew and Y. Wang, Physical Review B 45, 13244 (1992).

Google Scholar

[20] A. Lichtenstein, V. Anisimov, and J. Zaanen, Physical Review B 52, 5467 (1995).

Google Scholar

[21] V. Anisimov, F. Aryasetiawan, and A. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997).

Google Scholar

[22] A. Petukhov, I. Mazin, L. Chioncel, and A. Lichtenstein, Physical Review B 67, 153106 (2003).

Google Scholar

[23] P. Baetting, C. Ederer, and N. A. Spaldin, Physical Review B 72, 214205 (2005).

Google Scholar

[24] N. Lampis, C. Franchini, G. Satta, A. Geddo-Lehmann, and S. Massidda, Physical Review B 69, 064412 (2004).

Google Scholar

[25] J. S. Smart, Phys. Chem. Soilds 11, 97 (1959).

Google Scholar

[26] X. -Y. Chen, R. -Y. Tian, J. -M. Wu, and Y. -J. Zhao, submitted.

Google Scholar