Growth and Photovoltaic Performance of Single-Crystal TiO2 Nanorod Array Directly on Transparent Conducting Substrates

Article Preview

Abstract:

In this study, single-crystal TiO2 nanorod (NR) arrays were used as the photoanodes of dye sensitized solar cells (DSSC). The post-annealing treatment was carried out in air, O2, N2 and vacuum atomsphere. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been used to characterize the structure, morphology and crystallity of these samples. Although the nanorod arrays which undergo annealing remained the single-crystal structure without any change in the morphology, considerable improvement in the nanorod solar cell performance was obtained. The high efficicency of 4.42 % was achieved in the cells containing nanorods which were annealed in air at 500 °C for 30 min. In comparison, the cell fabricated using TiO2 samples without post- annealing treatment exhibited a low efficiency of just 2.1 %. Such a large improvement (280 %) was mainly attributed to the faster electron transport and the lower charge recombination rate after annealing due to an increase of the depletion width. Otherwise, the cell performance improvement may result from an enhancement in the adhension and electrical contact at the TiO2/FTO interface. The in-depth study shows that the solar cell efficiency was strongly dependent on the annealing ambience, too.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

159-163

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel: J. Am. Chem. Soc. Vol. 115 (1993), p.6382.

Google Scholar

[3] E. Ghadiri, N. Taghavinia, S.M. Zakeeruddin, M. Grätzel and J.E. Moser: Nano Lett. Vol. 10 (2010), p.1632.

Google Scholar

[4] H.J. Koo, K. Kim, N.G. Park, S. Hwang, C. Park, and C. Kim: Appl. Phys. Lett. Vol. 92 (2008), p.142103.

Google Scholar

[5] S. Ito, N.L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin and M. Grätzel: Chem Commun. Vol. 38 (2006), p.4004.

DOI: 10.1039/b608279c

Google Scholar

[6] S.J. Roh, R.S. Mane, S.K. Min, W.J. Lee, C.D. Lokhande and S.H. Han: Appl. Phys. Lett. Vol. 89 (2006), p.253512.

Google Scholar

[7] P.T. Hsiao, Y.L. Tung and H. Teng: J. Phys. Chem. C Vol. 114 (2010), p.6762.

Google Scholar

[8] Y. Alivova and Z.Y. Fan: Appl. Phys. Lett. Vol. 95 (2009), p.063504.

Google Scholar

[9] C.Y. Huang, Y.C. Hsu, J.G. Chen, V. Suryanarayanan, K.M. Lee and K.C. Ho: Sol. Energy Mater. Sol. Cells Vol. 90 (2006), p.2391.

Google Scholar

[10] B. Liu and E.S. Aydil: J. Am. Chem. Soc. Vol. 131 (2008), p.3985.

Google Scholar

[11] O.K. Varghese, M. Paulose and C.A. Grimes: Nat. Nanotech. Vol. 4 (2009) p.592.

Google Scholar

[12] J.R. Jenning, A. Ghicov, L.M. Peter, P. Schmuki and A.B. Walker: J. Am. Chem. Soc. Vol. 130 (2008), p.13364.

Google Scholar

[13] M.K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel: J. Am. Chem. Soc. Vol. 127 (2005), p.16835.

DOI: 10.1021/ja052467l

Google Scholar

[14] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa and C.A. Grimes: Nano Lett. Vol. 8 (2008), p.3781.

Google Scholar

[15] H.E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello and S.T. Lee: Appl. Phys. Lett. Vol. 96 (2010), p.263104.

DOI: 10.1063/1.3442913

Google Scholar

[16] H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li and L. Guo: J. Phys. Chem. C Vol. 114 (2010), p.16451.

Google Scholar

[17] J.H. Bang and P.V. Kamat: Adv. Funct. Mater. Vol. 20 (2010), p.1.

Google Scholar

[18] A. Kumar, A.R. Madaria and C. Zhou: J. Phys. Chem. C Vol. 114 (2010), p.7787.

Google Scholar

[19] S. Meng and E. Kaxiras: Nano Lett. Vol. 10 (2010), p.1238.

Google Scholar