Study on Hydrothermal Synthesis of LaPO4:Eu3+ Materials

Article Preview

Abstract:

LaPO4:Eu3+ nanoparticles were prepared by the hydrothermal synthesis method at different temperatures. The phase composition and microstructure of nanoparticles were characterized by XRD (X-ray diffraction) and SEM (Scanning electron microscopy), respectively. The results reveal that the phase composition of the powders is dependent on the water bath temperature but the microstructure has little effect. The doped powders can be well crystallized at 120°C with the hexagonal monazite-type structure of the LaPO4 phase. The monoclinic structure of LaPO4 phase generated as the temperature increases. The sample has pure monoclinic structure of LaPO4 phase when the temperature increased to 200°C. It has been shown that all the nanocrystals obtained at different temperatures present a long rod-like shape. The analysis of the fluorescence spectra shows that the luminous intensity of the monoclinic structure of LaPO4:Eu3+ is stronger than the hexagonal structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

211-214

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kmpe, O. Lehmann and M. Haase: Chem. Mater. Vol. 18(18) (2006), p.4442

Google Scholar

[2] H. Zhu and G.N. Xiong: J. Lumin. Vol. 24(3) (2002), p.234

Google Scholar

[3] Y.H. Xu, X.T. Xu and S.H. Feng: Chem. J. Chin. Univ. Vol. 17(8) (1996), p.1182

Google Scholar

[4] Q. Liu, X. Wang, Z.F. Liu, H.Q. Liu, S.T. Gu, T. Jiang and M. Zhou: Adv. Mater. Res. Vol. 79-82 (2009), p.2235

Google Scholar

[5] M. Haase, K. Riwotzki, H. Meyssamy and A. Kornowski: J. Alloys Compd. Vol. 303-304 (2000), p.191

DOI: 10.1016/s0925-8388(00)00628-9

Google Scholar

[6] I.W. Lenggoro, B. Xia and H. Mizushima: Mater. Lett. Vol. 50 (2001), p.92

Google Scholar

[7] U. Rambabu and S. Buddhudu: Opt. Mater. Vol. 3 (2001), p.401

Google Scholar

[8] M. Ferhi, K. Horchani-Naifer and M. Ferid: J. Lumin. Vol. 128 (2008), p.1777

Google Scholar

[9] Z.L. Xiu, S.W. Liu, M.K. Lu, H.P. Zhang and G.J. Zhou: Mater. Res. Bull. Vol. 41 (2006), p.642

Google Scholar

[10] M. Yu, J. Lin, J. Fu and Y.C. Han: Chem. Phys. Lett. Vol. 371(1-2) (2003), p.178

Google Scholar

[11] Z.F. Liu, X. Wang, Y.L. Ke, J. X. Guo, Q.J. Zheng, J. Wang, C.S. Huang and Y.S. Yin: J. Chin. Ceram. Soc. Vol. 36(5) (2008), p.720

Google Scholar

[12] L.X. Yu, H.W. Song, S.Z. Lu, Z.X. Liu, L.M. Yang and X.G. Kong: J. Phys. Chem. B. Vol. 108 (2004), p.16697

Google Scholar