Synthesis of Large-Area and Monolayer of Graphene: Role of Transition Metal Support and Growth Time by CVD Method

Article Preview

Abstract:

Continuous monolayer graphene sheet with large area has been synthesized via chemical vapor deposition (CVD) method using liquid hydrocarbon as precursor. Synthesis parameters including growth substrate and growth time have been investigated to assess their influence on monolayer graphene synthesis. Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) reveal that the number of layers and quality of graphene sheet depend greatly on the varied synthesis parameter. The study could be used to improve understanding the growth of graphene by CVD method in order to meet the needs of graphene in various electronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

331-335

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Geim and K. S. Novoselov: Nat. Mater. Vol. 6 (2007), p.183.

Google Scholar

[2] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J. Ahn, P. Kim, J.Y. Choi and B.H. Hong: Nature Vol. 457 (2009), p.706.

Google Scholar

[3] P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson and E.W. Hill: Nano Lett. Vol. 8 (2008), p.1704.

DOI: 10.1021/nl080649i

Google Scholar

[4] S. Park and R.S. Ruoff: Nat. Nanotechnol. Vol. 4 (2009), p.217.

Google Scholar

[5] S. Marchini, S. Gunther and Wintterlin: J. Phys. ReV. B Vol. 76 (2007), p.075429.

Google Scholar

[6] X.S. Li, W.W. Cai and R.S. Ruoff: Science Vol. 324 (2009), p.1312.

Google Scholar

[7] E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu; A. R. Biris, V. Saini and A. S. Biris: Chem. Commun. Vol. 27 (2009), p.4061.

DOI: 10.1039/b906323d

Google Scholar

[8] X.S. Li, W.W. Cai, L.G. Colombo and R.S. Ruoff: Nano Lett. Vol. 9 (2009), p.1752.

Google Scholar

[9] A. Srivastava, C. Galande, L.J. Ci, L. Song, C. Rai, D. Jariwala, K.F. Kelly and P.M. Ajayan: Chem. Mater. Vol. 22 (2010), p.3457.

DOI: 10.1021/cm101027c

Google Scholar

[10] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chena and S.S. Pei: Appl. Phys. Lett. Vol. 93 (2008), p.113103.

Google Scholar

[11] C. Du and N. Pan: Mater. Lett. Vol. 59 (2005), p.1678.

Google Scholar

[12] G. Messina, V. Modafferi, S. Santangelo, P. Tripodi, M.G. Donato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos and A. Pistone: Diamond Relat. Mater. Vol. 17 (2008), p.1482.

DOI: 10.1016/j.diamond.2008.01.060

Google Scholar

[13] P.W. Sutter, J.I. Flege and E.A. Sutter: Nat. Mater. Vol. 7 (2008), p.406.

Google Scholar

[14] R. Matthew, Maschmann, B.A. Placidus, A. Goyal, Z. Iqbal, R. Gat and T. S. Fisher: Carbon, Vol. 44 (2006), p.10.

Google Scholar

[15] Z.P. Chen, W. Ren, B. Liu, L. Gao, S. Pei, Z.S. Wu, J. Zhao and H.M. Chen: Carbon Vol. 48 (2010), p.3543.

Google Scholar

[16] D. Park, Y.H. Kim and J.K. Lee: Carbon Vol. 41 (2003), p.1025.

Google Scholar

[17] F. Gunes, H. Shin and C. Biswas: Acs Nano Vol. 4 (2010), p.4595.

Google Scholar