Contact Characteristics of Spherical Gear and Ring-Rack

Article Preview

Abstract:

The contact characteristics of spherical gear and ring-rack are researched in this paper. First, the tooth profile surface equation of spherical gear is established on the basis of the transmission theory of spherical gears. After that, the profile surface equation of ring-rack is established. Then, kinematics of the transmission of spherical gear and ring-rack is researched, the appreciate coordinates are established, and the profile surfaces of spherical gear and ring-rack are described in the same coordinate. Then, the contact analysis is conducted between spherical gear and ring-rack, and the contact point and ellipse parameters are acquired, as well as the rules of their evolvements. The conclusions above are benefit to further research on the transmission of spherical gear and ring-rack.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 308-310)

Pages:

2019-2024

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C. Yang et al., A geometric model of a spherical gear with a double degree of freedom, Journal of Materials Processing Technology, Vol. 123, no. 2, p.219–224, Apr. 2002.

DOI: 10.1016/s0924-0136(02)00067-5

Google Scholar

[2] Zhang Lijie, Pan Cunyun, Tao Yi et al. Kinematics of a wrist mechanism, China Mechanical Engineering, vol.18, no.12, pp.1387-1391, 2007(in Chinese).

Google Scholar

[3] L. Hu ran, A new kind of spherical gear and its application in a robot's wrist joint, Robotics and Computer-Integrated Manufacturing, Vol. 25, no. 4, Aug. 2008.

DOI: 10.1016/j.rcim.2008.07.002

Google Scholar

[4] S. C. Yang, A rack-cutter surface used to generate a spherical gear with discrete ring-involute teeth, The International Journal of Advanced Manufacturing Technology, Vol. 27, p.14–20, Feb. 2005.

DOI: 10.1007/s00170-004-2150-3

Google Scholar

[5] S. C. Yang, Mathematical model of a ring-involute teeth spherical gear with a double degree of freedom, The International Journal of Advanced Manufacturing Technology, Vol. 20, p.865–870, 2002.

DOI: 10.1007/s001700200210

Google Scholar

[6] L. C. Chao, C. B. Tsay, Contact characteristics of spherical gears, Mechanism and Machine Theory, Vol. 43, p.1317–1331, Oct. 2008.

DOI: 10.1016/j.mechmachtheory.2007.10.008

Google Scholar

[7] Pan Cunyun, Research on theory of spherical gear and its machining, Ph.D. dissertation, Department of Mechanical Engineering, National University of Defense Technology, Changsha, May, 2002(in Chinese).

Google Scholar

[8] He Jingliang, Wu Xutang, Study on gearing principle of crossed-axis conical involute gears, Chinese Journal of Mechanical Engineering, Vol.40, no.4, pp.81-84, 2004(in Chinese).

DOI: 10.3901/jme.2004.04.081

Google Scholar

[9] A Bracci, M Gabiccini, A Artoni, etc. Geometric contact pattern estimation for gear drives, Computer methods in applied mechanics and engineering, Vol.198, p.1563 – 1571.

DOI: 10.1016/j.cma.2009.01.009

Google Scholar

[10] Ma Zhenqun, Wang Xiaochun, Shen Bing, Real tooth contact analysis of the cylindrical gears with symmetrical arcuate tooth trace, Journal of Xi'an Jiaotong University, Vol.39, no.7, pp.722-725, 2005(in Chinese).

Google Scholar

[11] S. H. Wu, S. J. Tsai, Contact stress analysis of skew conical involute gear drives in approximate line contact, Mechanism and Machine Theory, no.1,pp.1-19, 2009.

DOI: 10.1016/j.mechmachtheory.2009.01.010

Google Scholar

[12] Pan Cunyun, Wen Xisen, Research on transmission principle and kinematic analysis for involute spherical gear, Journal of Mechanical Engineering, Vol. 41, no. 5, p.1–9, May. 2005(in Chinese).

Google Scholar

[13] Yao Qishui, Li Changyi, Pan Cunyun, Profile formule deriation of the involute spherical gears, Journal of National University of Defense Technology, Vol.26, no.4, pp.93-98, 2004(in Chinese).

Google Scholar

[14] F. L. Litvin, A. Fuentes, Gear geometry and applied theory , Cambridge University Press, 2004.

Google Scholar